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Probability Review

1 Basic theory

1.1 Basic definitions and independence

Let Ω be the set of all possible outcomes of a (discrete) random experiment. We call Ω the
sample space of the experiment. For example, suppose our random experiment consists of
flipping a fair coin n times independently. Then we can represent Ω as

Ω = {(a1, . . . , an) : ai ∈ {0, 1}}

where we encode heads as 1 and tails as 0.
A probability distribution over Ω is a function p : Ω → R≥0 such that

∑
x∈Ω

p(x) = 1. An event

is any set A ⊆ Ω, and the probability of this event is Pr
p
[A] =

∑
x∈A

p(x). We will often just

write Pr instead of Pr
p

when the distribution p is clear from context. Two events A,B ⊆ Ω

are called independent, if Pr[A ∩B] = Pr[A] Pr[B].
In words, we can define the probability of an event in a uniform distribution as

Pr[event happens] =
number of ways it can happen

total number of outcomes

In our example, the event that the first flip is heads is represented as the set

A1,1 = {(1, a2, . . . , an) : ai ∈ {0, 1}}

and similarly the event that the first flip is tails is

A1,0 = {(0, a2, . . . , an) : ai ∈ {0, 1}}

We can similarly define the events Ai,1 for the i-th flip to be heads, and Ai,0 for tails. Since
the coin flips are independent, and since the coin is fair, we have that

p((a1, . . . , an)) = Pr [A1,a1 ∩ . . . ∩ An,an ]

= Pr [A1,a1 ] . . .Pr [An,an ]

=
1

2n
.
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A (real-valued) random variable is a function X : Ω → R. In our example, the number of
heads is a random variable represented by the function

X((a1, . . . , an)) =
n∑

i=1

ai

Two discrete real-valued random variables X, Y are called independent if

Pr [X = x, Y = y] = Pr [X = x] Pr [Y = y]

for any x, y ∈ R. The random variables X1, . . . , Xn are called (jointly) independent if

Pr [X1 = x1, . . . , Xn = xn] = Pr [X1 = x1] . . .Pr [Xn = xn]

for any x1, . . . , xn. Note that the variables X1, . . . , Xn can be pairwise independent with-
out being jointly independent! In our example, letting Xi be the random variable that is
1 if the i-th coin landed heads and 0 otherwise (i.e., Xi((a1, . . . , an)) = ai), the variables
X1, . . . , Xn are jointly independent.

1.2 Law of total probability

The law of total probability states that if we have events A1, A2, . . . , An which partition
the sample space (i.e., Ω is a disjoint union of these events), and B is any event, then

Pr [B] =
n∑

i=1

Pr [B ∩ Ai] .

The law of total probability is also valid if we have a countably infinite partition into
events A1, A2, . . . , An, . . ., in which case

Pr [B] =
∞∑
i=1

Pr [B ∩ Ai] .

1.3 Conditional probability

Conditioning on something means assuming with certainty that this thing will happen.
Formally, the probability of event A conditioned on event B is defined as

Pr[A|B] =
Pr[A ∩B]

Pr[B]

or, in words, the probability that both events happen, divided by the probability that B
happens. The intuition is that we focus only on the part of our sample space Ω on which
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B happens (i.e. the subset B ⊂ Ω), and we make this our new sample space. Then the part
of A that matters is only the intersection A ∩ B, and furthermore, since B doesn’t have
the full probability mass but only Pr [B], we need to scale by 1

Pr[B]
to normalize, hence the

formula.
To see that this is indeed a valid probability, note that

Pr[A|B] + Pr[A|B] =
Pr[A ∩B] + Pr[A ∩B]

Pr[B]
= 1

From the above definition, we also get the following useful relation, called Bayes’ rule:

Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B]

Using conditional probability, we obtain a formula for the probability of an intersection
of events, even if the events are not independent.

Pr[A1 ∩ A2 · · · ∩ An] = Pr[A1] Pr[A2|A1] . . .Pr[An|A1 ∩ A2 ∩ · · · ∩ An−1]

The above is often called the “chain rule” of conditional probability.

1.4 Union bound

Consider events A1, . . . , An ⊆ Ω, where Ω is a sample space. Then we have

Pr

[
n⋃

i=1

Ai

]
≤

n∑
i=1

Pr [Ai]

The proof is quite natural: we have

Pr

[
n⋃

i=1

Ai

]
=

∑
ω∈∪n

i=1Ai

p(ω)

≤
n∑

i=1

∑
ω∈Ai

p(ω) =
n∑

i=1

Pr [Ai] .

This technique is commonly used when we want to provide a bound on the probability
that at least one event happens, from a family of events. We upper bound this probability
by the sum of the probabilities of the individual events. This is tight when all the Ai are
disjoint.
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1.5 Expectation

For a discrete real-valued random variable X taking possible values x1, . . . , xn, the expec-
tation is defined as

E [X] =
n∑

i=1

Pr [X = xi]xi

Linearity of Expectation
Given random variables X1, ..., Xn and X =

∑n
i=1Xi, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi]

In words, the expected value of the sum of random variables is equal to the sum of the
expected values. A very important takeaway from this result is that it holds even if the
random variables are not independent. This will be used frequently when we have to find
the expected value of a sum of random variables when they might not be independent.

Multiplicativity of expectation under independence
Another cool property of expectation is that the expectation of a product of independent
variables is the product of individual expectations:

E [XY ] = E [X]E [Y ] .

To see this, it is easiest to start manipulating the right side. Suppose X can take values in
S and Y can take values in T , and let W = {xy : x ∈ S, y ∈ T}. Then we have

E [X]E [Y ] =
∑
x∈S

∑
y∈T

Pr [X = x] Pr [Y = y]xy

=
∑
x∈S

∑
y∈T

Pr [X = x, Y = y]xy

=
∑
a∈W

∑
(x,y)∈S×T :xy=a

Pr [X = x, Y = y] a

=
∑
a∈W

Pr [XY = a] a = E [XY ] .

1.6 Variance

For a discrete real-valued random variable X , the variance is defined as

Var [X] = E
[
(X − E [X])2

]
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Intuitively, the variance captures how far the random variable is from its expectation in a
squared, expected sense. Note that this can be alternatively expressed as

E
[
(X − E [X])2

]
= E

[
X2 − 2XE [X] + E [X]2

]
= E

[
X2
]
− 2E [XE [X]] + E [X]2

= E
[
X2
]
− 2E [X]2 + E [X]2

= E
[
X2
]
− E [X]2 .

Linearity of variance under pairwise independence.
An important property of the variance is that it is additive when the summands are pair-
wise independent random variables. That is, if X1, . . . , Xn are pairwise independent ran-
dom variables, we have

Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var [Xi]

To see this, note that

Var

[
n∑

i=1

Xi

]
= E

( n∑
i=1

Xi

)2
−

(
n∑

i=1

E [Xi]

)2

=
n∑

i=1

E
[
X2

i

]
+ 2

∑
i<j

E [XiXj]−
n∑

i=1

E [Xi]
2 − 2

∑
i<j

E [Xi]E [Xj]

=
n∑

i=1

E
[
X2

i

]
−

n∑
i=1

E [Xi]
2

=
n∑

i=1

Var [Xi]

where we used the fact that E [XY ] = E [X]E [Y ] for independent X, Y .

1.7 Examples

1. Suppose we pick a uniformly random permutation of n elements. What is the ex-
pected number of fixed points in it?

Solution. Let Xi = 1 if the i-th element is a fixed point and Xi = 0 otherwise. The

total number of fixed points is X =
n∑

i=1

Xi. By linearity of expectation,

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

Pr[Xi = 1] =
n∑

i=1

1

n
= 1
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2. For each of the following distributions, compute their expectation and variance: (1)
Uniform in [n], (2) Bernoulli with success probability p.

Solution.

(1) We have

E[X] =
n∑

i=1

1

n
i =

1

n

n(n+ 1)

2
=

n+ 1

2

and

V ar[X] = E[X2]− (E[X])2 =
n∑

i=1

1

n
i2 −

(
n+ 1

2

)2

=
1

n

n(n+ 1)(2n+ 1)

6
− (n+ 1)2

4
=

n2 − 1

12

(2)

E[X] = p · 1 + (1− p) · 0 = p

V ar[X] = E[X2]− (E[X])2 = p · 12 + (1− p) · 02 − p2 = p(1− p)

3. Suppose Barr flips 6 fair coins. What is the probability that result is three heads and
three tails? Suppose furthermore that Barr has to pay $1 to flip 6 coins. What is the
expected number of dollars she must pay until she sees the result of three heads and
three tails?

Solution. The probability space can be represented as Ω = {(a1, . . . , a6) : ai ∈
{0, 1}}. The event of getting three heads is then A = {(a1, . . . , a6) :

∑6
i=1 ai = 3}.

Since every possible choice (a1, . . . , a6) has the same probability 1
26

, we have

Pr [A] =
|A|
26

=

(
6
3

)
26

=
5

16

For the second part, we’re in the following general situation: we have a Bernoulli
(i.e., {0, 1}) random variable X such that Pr [X = 1] = p, and we sample indepen-
dent copies X1, X2, . . . of X . We want to know what is the expected time E [T ] such
that XT = 1 for the first time. Well, we have

Pr [T = t] = Pr [X1 = 0, . . . , Xt−1 = 0, Xt = 1] = (1− p)t−1p
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and hence

E [T ] =
∞∑
t=1

Pr [T = t] t =
∞∑
t=1

(1− p)t−1pt

= p
∞∑
t=1

(1− p)t−1t

= p

(
∞∑
t=1

(1− p)t−1 +
∞∑
t=2

(1− p)t−1 + . . .

)

= p

(
1

p
+ (1− p)

1

p
+ (1− p)2

1

p
+ . . .

)
= 1 + (1− p) + (1− p)2 + . . . =

1

p
.

So, we get a very neat result: the expected number of independent trials until a
Bernoulli random variable with probability of being 1 equal to p is 1 is 1

p
.

Applying this to our case, the expected number of dollars will be 16
5

.

This calculation can be simplified using the following identity which holds when-
ever T ranges over the natural numbers:

E [T ] =
∞∑
t=0

Pr [T > t]

4. Barr flips a fair coin n times, and so does Derrick. Show that the probability that they
get the same number of heads is

(
2n
n

)
/4n. Use your argument to verify the identity

n∑
k=0

(
n

k

)2

=

(
2n

n

)

Solution. Let our probability space be Ω = {(a1, . . . , an, b1, . . . , bn) : ai ∈ {0, 1}, bi ∈
{0, 1}}, where ai = 1 if the i-th flip of Barr was heads and 0 otherwise, and bi = 1
if the i-th flip of Derrick was tails, and 0 otherwise. Note that we encode heads and
tails in opposite ways for Barr and Derrick.

Then note that the event that they flipped the same number of heads is

A =

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai =
n∑

i=1

(1− bi)

}

=

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai +
n∑

i=1

bi = n

}
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which immediately tells us that Pr [A] = (2nn )
22n

as wanted.

Now, note that we could have computed the same probability with a different prob-
ability space: namely, the one where we encode heads and tails in the same way.
Here Ω = {(a1, . . . , an, b1, . . . , bn) : ai ∈ {0, 1}, bi ∈ {0, 1}}, where ai = 1 if the i-th flip
of Barr was heads and 0 otherwise, and bi = 1 if the i-th flip of Derrick was heads,
and 0 otherwise. Now we have

A =

{
(a1, . . . , an, b1, . . . , bn) :

n∑
i=1

ai =
n∑

i=1

bi

}

We can calculate the probability by considering all the different possible numbers of
heads that the two players can have (we’re using the law of total probability here):

Pr [A] =
n∑

k=0

Pr

[
A ∩

n∑
i=1

ai = k

]

=
n∑

k=0

Pr

[
n∑

i=1

ai =
n∑

i=1

bi = k

]

=
n∑

k=0

Pr

[
n∑

i=1

ai = k

]
Pr

[
n∑

i=1

bi = k

]

=
n∑

k=0

(
n
k

)
2n

(
n
k

)
2n

=

∑n
k=0

(
n
k

)2
4n

.

Comparing the two expressions, we get the desired identity.
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2 Concentration Inequalities

Concentration inequalities are tools that allow us to bound the probability with which a
random variable can be far from its expectation. There is a vast number of concentration
inequalities corresponding to the different assumptions on the random variable.
For example, if a random variable is a sum of many independent random variables, intu-
itively it seems very (exponentially in the number of summands) unlikely for all individ-
ual random variables in the sum to conspire to bring the value of the sum away from its
expectation. As we’ll see below, in such a situation we in fact have theorems saying that
deviating from the expectation is exponentially unlikely, as one intuitively expects.

2.1 Markov’s Inequality.

Let Y be a discrete random variable taking non-negative values in the set S. Then for any
a > 0,

Pr[Y ≥ a] ≤ E[Y ]

a

A nice feature of this inequality is that it only depends on the expectation of the random
variable.
Proof.

E[Y ] =
∑
y∈S

y Pr[Y = y] =
∑

y∈S,y<a

y Pr[Y = y] +
∑

y∈S,y≥a

y Pr[Y = y]

≥
∑

y∈S,y≥a

y Pr[Y = y] ≥
∑

y∈S,y≥a

aPr[Y = y] = aPr[Y ≥ a]

This is tight when Y is a with probability 1. Markov’s inequality is important because
it ties the probability of a random variable being greater than some threshold to the ex-
pected value of the random variable. What’s not obvious though is that it can also be
extended to prove much more powerful inequalities.

2.2 Chebyshev’s Inequality.

Let X be a random variable with expected value µ and strictly positive variance σ2. Then
for all real k > 0:

Pr[|X − µ| ≥ k] ≤ σ2

k2

What this is saying is that the probability that X is a distance from the mean is related
directly to the variance and inversely to the squared distance. In general Chebyshev’s
inequality provides us with a stronger bound than Markov’s inequality because we utilize
the variance of the random variable.
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Proof. Since (X − µ)2 is a nonnegative random variable, by Markov’s inequality we get

Pr[(X − µ)2 ≥ k2] ≤ E[(X − µ)2]

k2

Pr[X − µ ≥ k] ≤ σ2

k2

2.3 Chernoff Bounds.

Suppose X1, . . . , Xn are independent random variables taking values in {0, 1}. Let X
denote their sum and let µ = E[X] denote the sum’s expected value. Then for any β > 0,

• Pr[X > (1 + β)µ] < e−β2µ/3, for 0 < β < 1

• Pr[X > (1 + β)µ] < e−βµ/3, for β > 1

• Pr[X < (1− β)µ] < e−β2µ/2, for 0 < β < 1

This allows us to get an even tighter bound because we can use the fact that the random
variables exhibit full mutual independence. Note that this is a stronger assumption than
pairwise independence! There are groups of random variables which are all pairwise
independent but which are not mutually independent.

2.4 Examples

1. Let’s say that we flip a biased coin that lands heads with probability 1
3

a total of n
times. Use Chernoff bounds to determine a value of n such that the probability of
getting more than half of the flips heads is less than 1

1000
.

Solution. Let Xi be a random variable that is 1 if the i-th flip landed heads and

0 otherwise. If we denote X =
n∑

i=1

Xi, we want to find the smallest n such that

Pr[X > n
2
] < 1

1000
.

Note that µ = E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

1
3
= n

3
. Applying Chernoff bounds from the

previous section with β = 1
2

we get

Pr[X >
3

2
µ] < e−(1/2)2µ/3

⇔Pr[X >
n

2
] < e−n/36

So for e−n/36 < 1/1000 ⇔ n > 36 log 1000 ≈ 250 we have the required bound.
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2. Bar the bear decides he wants to manage beehives in his old age. He’s just received k
bees that he wants to allocate to his n beehives. Since Bar is old, he often loses count
when trying to allocate the bees to beehives. He decides to just allocate the bees
randomly to his hives. That is, for each bee, he chooses a beehive uniformly at ran-
dom. Help Bar prove that his strategy yields an approximately uniform distribution
of bees with high probability.

(a) Let Xi be the number of bees in the i-th beehive. Compute E[Xi].
Solution. Let Yji be 1 if the j-th bee is allocated to the i-th beehive, and 0
otherwise. We have E[Yji] = Pr[j-th bee is put into i-th beehive] = 1/n.
Then Xi =

∑k
j=1 Yji, so E[Xi] =

∑k
j=1 E[Yji] =

∑k
j=1 1/n = k/n.

(b) Show that Xi and Xj are not independent.
Solution. We see that Pr[Xi = k ∩ Xj = k] = 0. However, Pr[Xi =
k] Pr[Xj = k] = (1/n)2k. Thus, Xi and Xj are not independent.

(c) Let M = max(X1, X2, . . . , Xn). Show Pr[M ≥ 2k/n] ≤ ne−k/(3n).
Solution. The idea is to use Chernoff bounds to show that Pr[Xi ≥ 2k/n]
is small and then use the union bound to bound the probability that
any of the Xi variables is greater than 2k/n. Recall that Xi =

∑k
j=1 Yji.

We have Pr[Xi ≥ (1 + δ)E[Xi]] ≤ e−δ2E[Xi]/3 by Chernoff. Thus, we
get Pr[Xi ≥ 2k/n] ≤ e−k/(3n), and by union bound Pr[M ≥ 2k/n] ≤∑n

i=1 Pr[Xi ≥ 2k/n] ≤
∑n

i=1 e
−k/(3n) = ne−k/(3n).
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3 The Coupon Collector problem

Suppose there are n different kinds of coupons, and we want to collect at least one coupon
from every kind. We start out with nothing, and at each step, we get a new random
coupon, equally likely to be any of the n kinds, and independent of the previous coupons.
This is known as the coupon collector’s problem.

• What is the expected time T when we’re done collecting?

• What is the variance of T ?

• Use Chebyshev’s inequality to bound the probability that T deviates far from its
expectation.

Solution. Let Ti be the random variable equal to the first time we have i different kinds
of coupons. Then, we can break the total time to collect all kinds of coupons Tn into the
phases between getting a new kind of coupon:

E [Tn] = E [T1 + (T2 − T1) + . . .+ (Tn − Tn−1)]

= E [T1] + E [T2 − T1] + . . .+ E [Tn − Tn−1] .

Now let’s think about the random variable Tk+1−Tk: it is the time it takes us to get a k+1-
th coupon given that we already have k coupons. No matter what kinds of coupons we
have already, the probability that we get a new coupon is n−k

n
in each step independently.

This is identical to the earlier problem where we had a Bernoulli random variable X such
that Pr [X = 1] = p, and we showed that the expected time until it becomes 1 for the first
time is 1

p
. Thus, E [Tk+1 − Tk] =

n
n−k

, and

E [Tn] = 1 +
n

n− 1
+ . . .+

n

1

= n

(
1

n
+

1

n− 1
+ . . .+

1

1

)
= nHn

where Hn is the n-th harmonic number. It is known that Hn = Θ(log n) (which can be
proved using an integral among other methods), hence E [T ] = Θ(n log n).
For the variance, note that the random variables Tk+1 − Tk are independent. Indeed, if
k > l, we have

Pr [Tk+1 − Tk = tk, Tl+1 − Tl = tl] = Pr
[
Tk+1 − Tk = tk

∣∣ Tl+1 − Tl = tl
]
Pr [Tl+1 − Tl = tl]

Now, note that conditioning on Tl+1 − Tl = tl has no effect on the probability that Tk+1 −
Tk = tk, since the future coupons we get are independent of the past. Hence the above is

= Pr [Tk+1 − Tk = tk] Pr [Tl+1 − Tl = tl]
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which shows that the random variables are indeed independent. This means that

Var [Tn] = Var [T1 + (T2 − T1) + . . .+ (Tn − Tn−1)]

= Var [T1] +Var [T2 − T1] + . . .+Var [Tn − Tn−1]

Now we’re faced with the general task of computing the variance of the random variable
T which is the first time that a Bernoulli random variable X with Pr [X = 1] = p becomes
1. We have

Pr [T = t] = (1− p)t−1p

and as we saw earlier, E [T ] = 1
p
. It remains to compute

E
[
T 2
]
=

∞∑
t=1

Pr [T = t] t2

=
∞∑
t=1

(1− p)t−1pt2

= p
∞∑
t=1

(1− p)t−1t2

We could compute this sum by decomposing it into simpler sums in a clever way. But
here’s a useful (and more principled) trick for computing sums like this: consider the
function f(x) = 1

1−x
for |x| < 1. Then we have the power series expansion

1

1− x
= 1 + x+ x2 + . . . =

∞∑
n=0

xn

Differentiating both sides, we have

1

(1− x)2
= 1 + 2x+ 3x2 + . . . =

∞∑
t=0

(t+ 1)xt

and differentiating again,

2

(1− x)3
= 2 + 6x+ 12x2 + . . . =

∞∑
t=0

(t+ 1)(t+ 2)xt

Using this, we have
∞∑
t=1

(1− p)t−1t2 =
∞∑
t=1

(1− p)t−1t(t+ 1)−
∞∑
t=1

(1− p)t−1t

=
∞∑
t=0

(1− p)t(t+ 1)(t+ 2)−
∞∑
t=0

(1− p)t(t+ 1)

=
2

p3
− 1

p2
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and so

Var [T ] = E
[
T 2
]
− E [T ]2

=
2

p2
− 1

p
− 1

p2
=

1− p

p2

which implies that

Var [Tn] =
n∑

k=1

1− n−k
n(

n−k
n

)2 =
n∑

k=1

nk

(n− k)2
≤ n2

∞∑
l=1

1

l2
≤ 2n2.

Thus, by Chebyshev,

Pr [|Tn − E [Tn]| ≥ cn] ≤ 2

c2
.


