
Foundations of Computer Security October 14, 2022
Massachusetts Institute of Technology 6.1600 Fall 2022
Henry Corrigan-Gibbs, Yael Kalai, Nickolai Zeldovich Problem set 3

Problem set 3

This assignment is due at 10:00pm ET on November 3, 2022.

Please make note of the following instructions:

• Remember that your solutions must be submitted on Gradescope. Please sign-up
for 6.1600 Fall 2022 on Gradescope, with the entry code 577GE7, using your MIT
email.

• We require that the solution to the problems is submitted as a PDF file, typeset
on LaTeX, using the template available on the course website (https://61600.
csail.mit.edu/2022/). Each submitted solution should start with your name,
the course number, the problem number, the date, and the names of any students
with whom you collaborated.



2 Problem set 3

Problem 3-1. Private Album Encryption [40 points]

This problem will help you prepare for the coding part of Lab 3. Note that we refer to ele-
ments from the coding parts of previous labs. The problem focuses on combining several
primitives that we saw in class, and to use these primitives to create new protocols with
more complex security properties. We will start by describing and defining the primitives
you can use to build your new protocols.

Global Sharing: You have access to a centralized server that can store data and metadata
for you and send that data to any user that requests it. More precisely, you have access to
a function Store(obj id, obj) that will store the object obj under the corresponding
ID onto the server, and a function Load(obj id) that will fetch the object associated
with the ID from the server.

Public Profiles: You have access to the PublicProfile feature you’ve developed in Lab 0
that makes it possible for any user to publicly advertise any data and metadata to other
users. In particular, you have access to a function

update public profile infos(infos, metadata)

that will update the info and metadata of your public profile and push it to the server.
You also have access to a

get friend public profile(friend username)

function to get a friend’s public profile form the server.

Public Key Signature Scheme: You have access to the public-key signature scheme from
lab 2: (GenSig, Sign,Ver). The message space for the signature scheme is {0, 1}∗.

Public Key Infrastructure: You have access to a function

get public signing key(friend username)

that gives you the signature-verification public key for the given username. You may as-
sume that the public key returned from this function is the true public key for the given
username. (Note that this is equivalent to assuming that you have completed Lab2 suc-
cessfully. Note that these keys cannot be used for encryption).

Symmetric-Key Encryption: You have access to an authenticated symmetric-key encryp-
tion scheme (GenEnc,Enc,Dec, with message space {0, 1}∗. The encryption scheme en-
crypts a message m to a ciphertext of length O(|m|).
Public-Key Authenticated Encryption: You have access to a new authenticated public-key
encryption scheme, which simultaneously signs and encrypts:

GenAE()→ (sk, pk),

AuthEnc(pk0, sk1,m)→ c,

VerDec(sk0, pk1, c)→ m/⊥.



Problem set 3 3

The message space is {0, 1}∗ and the AuthEnc scheme encrypts a message m to O(|m|) bits.

This scheme is used as follows: Alice runs GenAE to get (skA, pkA), and Bob runs (skB, pkB)
to generate key pairs. Once Alice and Bob exchange their public keys, Alice encrypts and
authenticates for Bob with

AuthEnc(pkB, skA,m)→ c;

Bob decrypts and authenticates the ciphertext c with

VerDec(skB, pkA, c)→ m/⊥.

Under the hood, this scheme uses a primitive you’ve already seen: key exchange.

Note that the public-key infrastructure does not provide these public keys! You will
need a way to securely transfer them.

(a) Describe a protocol using these primitives that makes it possible for users to
exchange their AuthEnc public keys with one another via the server such that
if the protocol completes, the users either (i) have each other’s true AuthEnc
public keys, or (ii) detect server misbehavior and halt. (Here we assume that
the server may tamper with its own storage.)
[5 points]

(b) Describe a protocol using these primitives that makes it possible for a given
user (the owner) to confidentially share a secret bitstring with a group of other
users (their friends) despite the presence of malicious users.
Assumption: Operations between the clients and the server happen sequen-
tially and atomically. For instance, a client will always have the latest version
of the server state when the client tries to modifying the state. You will also
assume that your answer to Part (a) was correct and that all users have access
to each other’s AuthEnc public keys.
Threat Model: in this question we assume an honest server (that will not
tamper with the integrity of the messages) but we assume a server that has
no security measures and will serve any request from any user. Finally we
assume the presence of malicious users that will try to access photos that they
are not supposed to see.
Security Properties:

• Correctness: If the server and all users behave honestly, at the end of the
protocol, each “friend“ user should have access to the secret.

• Confidentiality: If the server and a coalition of malicious non-friend users
conspire to learn the secret, they should still “learn nothing” about it.

• Integrity: If the owner and one of its friends F behave honestly, then
friend F should either (a) recover the owner’s true secret or (b) detect
misbehavior and halt, even if the server is malicious and conspires with
many of the owner’s friends.



4 Problem set 3

In particular, you will describe the protocols (using pseudo-code, text and/or
drawings) for the following operations:
create shared secret(secret name, K, list friends),
get shared secret(secret name)→ K
[5 points]

(c) Let us now consider the actual setup of Lab 3. Alice (the owner) wants to share
a private album of photos with a group of friends (Bob and Cedric). In order
to be able to control who has access to these pictures we introduce the notion
of private albums. You will design such a scheme by assuming the following
assumptions, adversaries and by trying to archieve the security properties de-
scribed here.
Assumption: Operations between the clients and the server happen sequen-
tially and atomically. For instance, a client will always have the latest version
of the server state when the client tries to modifying the state.
Threat Model:

• The server is functioning correctly and will not tamper with the integrity
of messages. However, the server will not authenticate users.

• Malicious users will try to access photos that they are not supposed to see.

Security Properties:

• Correctness: Any friends listed in the album can read and add photos to
the album that will then be visible to friends listed in the album, even if
the owner is offline.

• Confidentiality: No user besides the owner of the secret and the friends
listed in the album should be able to gain access to the album’s photos.

• Revocability: The owner (and only the owner) can add or remove other
users from the list of friends the album is shared with.

Note that we cannot guarantee that a user that has been removed from the list
of friends of the album will never have access to photos uploaded to the album
before they were removed (they might have downloaded the full album before
being removed). Nevertheless, we should guarantee that they will not have
access to newly uploaded photos.
In particular, you will describe the protocols (using pseudo code, text and/or
drawings) for the following operations:

create shared album(album name, photos, list friends)

add friend(album name, friend username),

remove friend(album name, friend username),

add photo(album name, photo)



Problem set 3 5

Describe two schemes that satisfy the following bandwidth limitations for the
remove friend operation assuming m friends and n photos of size l ≫ λ
with λ the security parameter as defined in the different primitives:

1. Bandwidth limited to O(n · l +m · poly(λ)).
2. Bandwidth limited to O((n+m) · poly(λ))

You may use the protocol you designed for Part (b) to solve this problem.
Completing this question concurrently with the coding part might be helpful.
[20 points]

(d) Assuming that we replace the Public Key Authenticated Encryption primitive
with a non-authenticated Public Key Encryption primitive , come up with an
attack on one of your previous protocol that could lead a malicious user Eve
to access photos not meant for her. [10 points]



6 Problem set 3

Problem 3-2. Message authentication codes [30 points] Recall that in class we men-
tioned the hash-then-MAC paradigm, which uses a MAC for messages of fixed length n
(such as AES, in which case n = 128), and a hash function with range {0, 1}n, to MAC
messages of arbitrary length, by first hashing the message to an element in {0, 1}n and
then applying the underlying MAC to the hash value.

In class we mentioned that for the resulting MAC to be secure the hash function must be
collision resistant, and thus this paradigm cannot be used with AES since its domain con-
sists of messages of length 128, and there does not exist a collision resistant hash function
with 128-bit security that maps to tags of bitlength 128, due to the Birthday Paradox.

In this problem we consider using the hash-then-MAC paradigm with AES but with a
hash function with a secret seed. In particular, consider the following hash function H : It
takes as input a (secret) seed (a1, . . . , at) and a message (M1, . . . ,Mt), where each ai and
Mi is a block of 128 bits. The hash function outputs

H((a1, . . . , at), (M1, . . . ,Mt)) =
t∑

i=1

aiMi.

The arithmetic is done over a finite field of size 2128 (known as the Galois Field and de-
noted by GF[2128]), though how the arithmetic is done is not important, the only important
thing is that the output is in {0, 1}128, and that in every (finite) field (and in particular in
GF[2128]) every non-zero element has an multiplicative inverse.

(a) Define the MAC scheme obtained by applying the hash-then-MAC paradigm
to the hash function H : ({0, 1}128)t × ({0, 1}128)t → {0, 1}128 and AES as the
underlying MAC.
[10 points]

(b) 1. Recall the attack for the hash-then-MAC using AES and a hash function
without a secret seed (assuming the message space is ({0, 1}128)t for t ≥ 2).
Hint: This attack takes time roughly 264.

2. Explain why this attack fails if we use the hash function above (with a
secret seed), assuming the attacker sees many fewer than 264 tags.

3. Is this hash-then-MAC scheme (with H as defined above and AES) secure
if the attacker gets to see more than 264 tags for messages of his choice?
Hint: Use the fact that AES is injective (i.e., if AES(K,M) = AES(K,M ′)
then M = M ′), and the fact that H is a linear function, together with the
fact that one can efficiently solve t linear equations with t variables (using
Gaussian elimination).

[20 points]



Problem set 3 7

Problem 3-3. Weaknesses of CPA-secure cryptosystems [30 points]

Let F : K × {0, 1}n → {0, 1}n be a secure pseudorandom function. In class, we saw the
CPA-secure encryption scheme (Enc,Dec) with keyspace K, where

Enc(k,m) :=


r ←R {0, 1}n

c← F (k, r)⊕m

output (r, c)
Dec(k, (r, c)) :=

{
m← F (k, r)⊕ c

output m
.

We will use a secure MAC scheme MAC : K×{0, 1}∗ → {0, 1}n over the same keyspace K.

MIT uses encryption to protect communications between department offices and its cen-
tral payroll system. In particular, the EECS department office and MIT’s payroll office
share a secret encryption key kEnc ←R K and a secret MAC key kMAC ←R K.

On each pay date, a machine in the EECS department sends a sequence of messages to
the payroll office. Each plaintext message is a 54-byte ASCII-encoded string with format:

m = “date:NNNN-NN-NN, mit id:NNNNNNNNN, amount:NNNNNNNNN.NN”,

where each N represents an ASCII-encoded decimal digit (i.e., ASCII values 0x30–0x39).

Unfortunately, the designers of the system make the wrong decision and use MAC-then-
encrypt rather than encrypt-then-MAC. In particular, the EECS department encrypts each
message m as:

ct = Enc(kEnc,m ∥MAC(kMAC,m)).

The machine at the payroll office operates on each ciphertext ct as follows:

•Compute (m′∥t′)← Dec(kEnc, ct).

•Check that the bytes of the string corresponding to the MIT ID number and the pay-
ment amount are valid ASCII decimal digits. If not, send a FORMAT ERROR message
to the EECS machine.

•Check that the date corresponds to today’s date. If not, send a DATE ERRORmessage
to the EECS machine.

•Check that t′ = MAC(kMAC,m
′). If not, send a MAC ERROR message to the EECS

machine.

•Append the (ID,amount) pair to a log file for later processing and send an OK mes-
sage to the EECS machine.

Explain how a network attacker that can intercept ciphertexts and interact with the pay-
roll server can recover all but one of the bits in each secret digit in the plaintexts that
the EECS department sends. Recovering these bits for a single plaintext using your attack
should take no more than than 10,000 interactions with the payroll server.


