Today: Continue the construction of a signature scheme from one-way functions Note: One-way fucntion is a minimal assumption since if OWFs do not exist then Gen can be inverted. Gen: r >> VK The construction proceeds in three steps: Construct a signature scheme that is one-time secure for msgs of bounded length. Covered last class Step 1: Step 2: From bounded length msgs to unbounded length msgs. Step 3: From one-time security for unbounded length msgs to standard (many-time) security. Step 2: From bounded length msgs to unbounded length msgs. Hash-then-sign: Given a collision resistant hash function  $h: \{0,1\}^n \to \{0,1\}^n$ Can convert a one-time secure signature scheme (Gen, Sign, Ver) with msg space {0.1}^ into a one-time secure signature scheme (Gen, Sign', Ver') with msg space {0,1}\*, as follows: Sign'(sk,m)=Sign(sk,h(m))  $Ver'(vk,m, \tau)=1$  iff  $Ver(vk,h(m), \tau)=1$ Theorem: If (Gen, Sign, Ver) is one-time (resp. many time) secure with msg space {0,1}° and if  $h: \{0,1\}^{\bullet} \longrightarrow \{0,1\}^{\bullet}$  is a collision resistant hash function, then (Gen, Sign', Ver') is one-time (resp. many time) secure with msg space [o.i]. "Proof: Suppose there exists an adv A that breaks the security of (Gen, Sign', Ver'). Denote the signing queries made by A by  $m_1,...,m_k$  and suppose it generates an accepting pair  $(m^*,c^*)$ s.t.  $m^* \neq m_i$  for every  $i \in [t]$ . Case 1: There exists  $i \in [t]$  s.t.  $h(m^*) = h(m)$ . In this case we can use A to find a collision, contradiction.

Case 2: For every  $i \in [t] h(m^*) \neq h(m_i)$ . In this case we can use A to break the (one-time) security of (Gen, Sign, Ver).

Note: Hash-and-sign is not only useful to enlarge the msg space, but it is also useful for:

## 1. Enhancing efficiency:

signing shorter msgs is faster than signing long ones, and signing is typically much slower than hashing.

#### 2. Enhancing security:

If we think of the hash function as a random oracle (i.e., indistinguishable from a truly random function), then even though the adversary can make Alice sign any msg m of his choice,

if we use the hash-then-sign paradigm, then the adversary will obtain a signature for H(m) which is a random message. This motivates weaker security definitions.

Def: A signature scheme (Gen, Sign, Ver) is existentially unforgeable against random message attack if for every (polynomial) t, the adversary, given polynomially many valid msg-signature pairs  $\{(m_i, \sigma_i)\}_{i \in [e]}$  for random msgs  $m_1, ..., m_t$ , outputs a valid msg-signature pair  $(m^*, \sigma^*)$  s.t.  $m^* \notin \{m_1, ..., m_t\}$ , only with negligible prob.

An even weaker security notion requires the adversary to sign a random msg as opposed to a msg of his choice.

**Def:** A signature scheme (Gen, Sign, Ver) is secure for random messages against random message attack if for every (polynomial) t, the adversary, given polynomially many valid msg-signature pairs  $\{(m_i, G_i)\}$  for random msgs  $m_i,...,m_i$ , and given a random msg  $m^*$ , outputs a valid signature  $G^*$  only with negligble prob.

See PSet 2 for a question about the hash-and-sign paradigm and its security benifits!

So far: one-time secure signature scheme for unbounded msg space

Step 3: From one-time security for unbounded length msgs to standard (many-time) security.

# tree-based signature scheme!

Use a one-time secure scheme (Gen, Sign, Ver) for msgs of unbounded length, and a PRF F, to construction a many-time secure signature scheme (Gen', Sign', Ver').

### Take 1: Inefficient construction

for a many-time secure signature scheme with msg space {0.13°.

Generate  $N=2^n$  pairs  $\{(sk_i^a, vk_i^a)\}_{i\in\{0,i\}^n}$  for the one-time scheme.

These keys are going to be in the leaves of tree.

Use ski only to sign msg  $i \in \{0,1\}^n$ .

Generate 2nd pairs {(ski, vki)} ie for the one-time scheme.

These keys are going to be the parents of the leaves in the tree.

For every i \( \{ 0.1 \}^{n-1} \) use sk\_i^n only to sign (vk\_i^n, vk\_i^n).

More generally, for every jein, generate 2 pairs {(ski, vki)} i e iois

for the one-time scheme.

These keys are going to be at layer n-j in the tree (where leaves are at level n).

Use  $sk_{i}^{i}$  only to sign  $(vk_{i0}^{i+1}, vk_{i1}^{i+1})$ .



Gen': Outputs  $VK^{\circ}$  as the verification key and keeps all the keys  $\{SK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,..b_{3}}VK^{\circ}_{b,.$ 

Sign'(SK,i): Sign(SK, i), 
$$(VK_{i_{...i_{0}}}^{i_{0}}, VK_{i_{...i_{0}}}^{i_{0}})_{j=0}^{n-1}$$
,  $(Sign(SK_{i_{...i_{0}}}^{i}, VK_{i_{...i_{0}}}^{i_{0}}, VK_{i_{...i_{0}}}^{i_{0}}))_{j=0}^{n-1}$ 

Ver': Verifies the path of signatures.

Main downside: Efficiency!

The signer needs to prepare and store an exponential size tree of keys!

### Final Construction:

Prepare the tree as needed! No need to store the entire tree!

Main idea: Use PRF!

- Gen': 1. Run Gen to obtain a key pair (sk, vk) for the one-time scheme.
  - 2. Choose a random PRF key K.

Ouput vk'=vk and sk'=(sk, K).

Sign': Given a secret key sk'=(sk, K) and a msg  $i \in \{0,1\}^n$ 

1. For every  $b \in \{0,1\}$ , let  $r_b = F(K,b)$ .

Let (sk', vk') be the key pair generated by Gen with randomness &.

- 2. For every  $j \in [n-1]$  and every  $b \in \{0,1\}$ , generate  $\left(SK_{i_1..i_5b}^{j+1}, VK_{i_1..i_5b}^{j+1}\right)$  by running Gen with randomness  $F(K,i_1,...,i_5,b)$
- 3. Sign as before.

Ver': Verifies the path of signatures (as before).