
Lecture 7- : Public - key
Infrastructure

6. 1600 -MIT

fall 2022

Corrigan - Gibbs
,
Kalai
,

Aldrich

Play
* Recap : Digital Signatures

Logistics
* Signatures in practice
* pug , ,, key i.gr#nwwegpg,g*Lab1theoy&csd(due tomorrow 10pm ET

- API/Goal * Lab 2 out on 9/30
- Common strategies
- Common pitfalls

[setup laptop .]

Recap : Digital signatures

Kyide_a: Message integrity w/o shared secret
↳ unlike MAC or

(Gen, Sign , Verify) password - based auth
↳ really revolutionary - no

sheet secret !

Hash-bamsigmtu-refenboundedms.gs ten
, many time see)

ppf Key

K Generated from

↳ ,
: "sÉ '

,
Prisoners vke

-
'

-

sko Sk ,# Marko VK
,

i ↑
/ 5£
,
ska , Sky skin Vk

,
Vko

, v14, Vkn

(: .
. .

'

;
for

'

_
- i
-

i
. .

!

-

i

-

i -
.
'
' VK.IO/oVklo1Vh1ioVkin

↑Moi
. _

- - - -
- UK

/ 010 Ukyo , , - - - -

To sign Msg , ↑
* use ✓km to sign .

Msf

+ Return all arks on path to root with siblings

* Use ski to sign (vk.no// vk.im)
* Return all signatures .

Gee lecture notes for a more formal description .]

Signatures in practice (briefly)

- One of the most widely used crypto tools
* HTTPS
* Software updates
* Encrypted messaging
* SSH
* VPN
* Essentially any protocol that sends msgs
one the Internet

- Two widely used protocols . . .
both nu

"

haeh & sign
"

↳ Rsa CgÉEgⁿ' way)
↳ EC - DSA + friends (extremely popular)
/ both based on hard problems in number theory)

Choice of Sig schemes

PQ
Standard PK size Sig size signs refs

← ˢʰʰ¥
↳ similar to

what weSPHINCST -128 328 800dB 5 750 / saw itin 2010s shift

Sister opts
RSA -2048 25GB 2568 2,000 50,000

- 19705 5k : "

43000 /go, /WifelyECDSA 256 32 B 648
used

572 -1 's

(Schnorr
,
Ed 25519)
- 19905

SHAZSG Hash = 10,000,0001s
64 bytes

- 99% of time
,

use ECDSA for modern variant

- In rare cases
,

want to choose a diff scheme .

* Post -quantum security (RSA and ECDSA anoint !
Hash -based sigs seemto be-

Also lattice - based .)

* Extra features : aggregation, blind signing , etc . . .

Public-key infrastructure
.

(PKI)
Last

year

T.FM
?⃝

r 0
0

> 1-k a
Dean me

The right image . .
-

t.FM
÷

m38

0

±
me

VK Dean
Ver/vk.am ,mˢ9,Bem)

How do I know it was dean who sent
me this email ?

Now that we have signatures , answer is clear ↑
(add uh

Dean)
But where do we get vkiean ?

Option: Use public key as name
.

Dean's
"

name
"

is the vk
.

Instead of calling him
"Dan !

call him 0x2EEc9DB3
.
. _

0668

-32b¥
- Can imagine

that at birth
, we're each given

an Csk
, v14

'

pair . Everyone calls us by vk .

This sort- of works ! Used in Bitcoin & friends ,
also for hidden services

,
i . .

P : Cumbersome
.

Hard to remember 328 names
.

↳ PKI

Bobby : What happens if you
lose your

secret key ? Or if it gets stolen ?
Or you realize you generated it incorrectly ?
↳ Revocation [

Crypto µby,

PKI is all about mapping . . .

human - intelligible
to public keys .

names

email addr

domain name

legal entity
phone ☆
Kerberos ID

can think of PKI as having the
API Grossly simplified)

Iskeyforlvk , < name >)→ { 0,13

* Many many ways to implement a PKI .

a-
.
we will see some .

* But all serve this sane purpose .

* No
"

perfect
"

solution here - lots of trade-offs .

We will look at a few common schemes
. •

* key as name
,
TOFU ,

art based

Trust on first use (TOFU)
→ Accept only first key you see for a name

.

Client keeps a cache = {3-
dictionary/
Meek table

Iskeyfor / vk.name) :
if name not in cache :

cache [name]=vk
return true

else :
return rk== cache [name]

Used in SSH
, signal , WhatsApp

(could use this in my
email example . Protection if

have already gotten end from Dean)
→ I

: - Simple ¥⇒
-

Easy to understand
-Surprisingly effective - protects you against
an attacker that hijacks 2nd connection .

Cogs : - No protection on first communication
- what happens when key changes?
↳ SSH : warn

. . .
then what?

Trust on first use (1-0-50)
→ Accept only first key you see for a name

.

①0 phisean
, Mss ,
T

> f-*
^

{ (Jean@ mit.edu , phrpean))
check pteoxaipkrean

Verify 0 on msg - -
-

Certificate - Based System
c- half- HTTPS

.
_

(CAD
→ Let certification authorities manage

have→ key mapping

client keeps a list of known CAs
'

verif keys .
CAs - { v12

Verisign ,
✓k9oogh , - - - }

List of CAs is packaged with browser/0s.

⇒ Client accepts (vk.name) pair if known CA signed it.
↳ CAs

"

attest
"

to name → vk mappings.

Iskeyfor / (v40) , name) :

For each VKCA in CAs :

if Verify /vk.us
,
/vk.name)

,
-)

return true

return false

when a client generates a new keypair,
it must get a CA to sign its vk

[Rb -key carts introduced in 1978 by Loren kohnfelter]in B.S . thesis
.

Certificate Issuance

4k,vk) ← GenoCAfskcnJlvk.me@mit.edu) ,$$$ -

◦

?⃝& €. .tk#t-hetI-E.-.7?-m.-it-ed...s

<
T TeSignlshcn.vlgme@mit.edu))

Common extension : Accept a Ak
,
nano) pair if its

signed by someone whose key
was signed by a known CA

Lots of extra metadata in art : Expiration date
,
_ .

_

Used on web (HTTPS/TLS)
,
code signing , SIMIME , - - - --

-
also at MIT

Prog :
_ Client only needs a few vks - scales well !
- Client can choose which CAs to trust
- No online interaction w/ CA

Cong : - Weakest link security - attacker who compromises
one CA can impersonate anyone

!

- Validation is typically pretty weak
. _ _ TOFU almost

- stolen key ?

Demo
In

- Show art & chain of trust for mit.edu

- Dump CRL data

openssl Crl - inform DER -text - noout -in <CRL>

- Q : Why intermediate CAs?

There are many variants on certificate - style

systems - key directory , web of trust
,

. . _

"

key
"

idea : To prove (vk.name) binding ,

I

can give you signature on

lvk
,
name] from someone you trust.

Problems with CA -based PKI

1. Any malicious/compromised CA can issue
certs for any domain .

→ Your browser trusts many sketchy CAs
↳ ◦ its

,
random businesses

,

etc)

→
"

AAA art services
"

can issue cent for
mit.edu . . - you'll never know

2011 : - Digistar signing key stolen
- Attacker used it to issue art for google.com
- Used to decrypt Gmail traffic in Iran

- Browsers pull Diginotw from list of known CA],☐*µgµµ,µw÷
"

certificate transparency
"

is one partial answer. _ .

2
.
Revocation is difficult

. . .

Revocation
- Aster a CA has issued a cat

,

it may want to revoke it→ make sure clients
reject it in the
future .

Why ?
* site owner has their secret key stolen /Heartbeat) -241
* site owner realizes they generated key
using bad randomness (Debian bug) - 2008

* MIT student graduates, account inactivated
* Crypto standards change (SHAI, RSA /024, . . .)

Appiah : Expiration
* Cert has expiration date

,
clients will

reject out after that date

* If expiration date is not far away,
this handles many routine revocation caus

e.g . MIT certs expire June 30 every year .

e.g . Leti Encrypt uses 90 -day expiration

Approach : Software vendor Ces
.
Mozilla)

ships update to client w/ full
list of revoked cents

.

- window of vulnerability .
_ as long as

update latency
- b/w storage cost after wane of
revocations

"

CRLSET
" "

crlike
"

App-roact.es : fallen out of favor

- Certificate revocation list CCRL)

↳ ask CA for list of all revoked unexpired arts
-

expw.ge after a wave of revocations
- what happens if can't reach CA serves ?

OCSP
↳ Ask CA each time you use art
- browsing history leaks to CA
- CA 0in critical path of page load
"

stapling
"
's short-lived art

Bottom line :

PKI is about hares ⇒ public keys
key idea : Certificates signed attestation of

name ⇒ vk binding

key challenge : Revocation stolen key
,

invalid binding

Reca_p: Many -time signatures from one-time sigs
[unbounded -

Claim : Given * a PRF w/ keyspace 9L length msgs
* a one-time Sig scheme

(Geno
, Signo , Vero)

can construct a 2ᵗ - time secure Sig scheme
for all 1- 30 when running time of all algs
grows as polyA) .

Pf idea : By induction on t

Base case (1--0) : This is one-time scheme .
Dore .

Indention : Assume for t- l .

Gene () :{ KIK IIPRF Key Use randomness
Gke,vke)← Gen!#as PRFCK

, e)
} output (k

,
like)

sign, (K, M) (she,vk a)← Gen?/)
(sko.hr)← Genie, C)
Csk ,

,

✓KD← Genie, C)?⃝← Sign, /see, vk.tl ✓K ,)
0m← Signe

. ,(skmg] , MFI :))

(output F- (vk.pk, ,0qom) }
Grows
linearly
with t !

Vert like , M , O) }
think ,R , rm)←r

Verofkeikollvki ,oe)&&
Vert . ,(vkr.cn, m[I :], Tm)

How to detect
"

rogue
"

CA?

- Have client software look for certain misbehavior

e. g.
Chrome his list of Google irks hadooded
If CA issues a rogue Google art,
Chrome will (I believe] notify Google↳ Doesn't really solve the problem .

Only works for friends of Google
↳If client knew what the right cat was

,

wouldn't need PKI
.

certifiatelranspam-y.com browsers
,
sort of)

- Require CAs to publish all cats they
sign in a public log . _ . many logs run

by many different orgs

- mit.edu can inspect logs regularly to
make sure that no CA has issued

rogue arts for its domains

- In theory
,

when browser gets a art

from a web server
,
it can

"audit
"

the art by checking that it
appears

in

the log .

- Lots of messy implementation details
↳ prevent logs from cheating
↳ ensure that everyone sees same log
↳ ensure thet client can audit recently issued carts
↳
privacy issues w/ auditing

:

i

i.

