Today: Public key encryption

Recall: Diffie-Hellman Key Exchange:

Let G a finite cyclic group $(G = \mathbb{Z}_p^*)$ of order n (i.e., |G| = n). $\{1, \dots, p-1\}$ with mult. mod p

Let g be a generator of G: $G = \{g, g^2, ..., g^n\}$

Choose at random
$$A = g^a$$
 Choose at random b in $\{1,...,n\}$, $B = g^b$

$$K = g^{ab} = A^b = B^a$$

Computational Diffie-Hellman (CDH) Assumption:

Given g^a , g^b , it is hard to compute g^{ab} , except with negl probability.

A passive adv cannot guess K assuming CDH!

This naturally lends itself to public key encryption!

Definition:

A <u>public key encryption scheme</u> consists of three efficient (randomized) algorithms: Gen, Enc, Dec, with the following syntax:

- 1. Gen takes as input security parameter and outputs a pair of secret and public keys (sk,pk).
- 2. Enc takes as input a public key pk and a msg m (from the msg space) and outputs a ciphertext ct.
- 3. Dec takes as input a secret key sk and a ciphertext ct and outputs a message m (from the message space) or abort.

Correctness:

For every (sk,pk) generated according to Gen, and for every msg m (from the msg space),

Pr[Dec(sk, Enc(pk,m))=m]=1.

Note:

A public key encryption scheme is a digital analog of a locked box, where only the receiver has the key.

Applications of public key encryption:

1. Key-exchange:

Server sends a public key pk to browser.

Browser chooses random K and sends Enc(pk,K) to server.

Now the server share a symmetric key and use that for communication!

2. Secure email:

A user A want to encrypt an email to another user B.

If A has pk, then she can use it to send encrypted emails to B.

Security:

As in the symmetric key setting, we consider two flavors of security:

CPA (Chosen Plaintext Attack) security and

CCA (Chosen Ciphertext Attack) security.

CPA Security (a.k.a semantic security):

For every m and m' (from the msg space),

$$(pk, Enc(pk,m)) \cong (pk, Enc(pk,m'))$$

for a randomly chosen pk chosen according to Gen.

Note:

This definition is much simpler than CPA definition in the symmetric setting!

The reason is that in the public-key setting, the adversary can encrypt

msgs on his own using pk!

CCA security:

Any efficient adv. wins in the following game only with prob.

1/2 + negligible:

El-Gamal Encryption scheme:

Let G be a finite cyclic group $(G = \mathbb{Z}_p)$ of order n (i.e., |G| = n).

Let g be a generator: $G = \{g, g^2, ..., g^n\}$.

Let $H: G \longrightarrow \{0,1\}^*$ be a hash function (modelled as a random oracle).

Let (E,D) be a symmetric authenticated encryption scheme.

Gen:

Choose at random a in $\{1,...,n\}$, set sk = a and $pk = g^a$.

Enc(pk,m):

Choose at random b in $\{1,...,n\}$. Let $K = H(pk^b)$.

Output $(g^b, E(K,m))$.

Dec(sk, (u,v)):

Compute $K=H(u^{sk})$ and output m=D(K,V).

Correctness: For any pair (pk, sk) = (g^a, a) and every msg m:

$$\operatorname{Dec}(a, (g^b, E(H(g^{ab}), m)) = \mathcal{D}(H(g^{ba}), E(H(g^{ab}), M)) = m$$

Performance:

To encrypt: 2 exponentiations: gb, pk.

To decrypt: 1 exponentiation: usk

Exponentiation is slow! (A few miliseconds on modern processors.)

At first it seems like decryption is twice as fast.

But go can be computed efficiently by precomputing {g2i} in

If we encrypt often to the same pk, then computing pkb can be done efficiently as well (with the same precomputation).

Security:

Semantic Security:

For semantic security, all we need to argue is that given $pk=g^a$, and given the first part of the ct, g^b ,

the symmetric key $H(g^{ab})$ is ind. from random:

$$(g^a, g^b, H(g^{ab})) \cong (g^a, g^b, U)$$

This assumption is called Hash Diffie-Hellman (HDH).

It is stronger than the Computational Diffie-Hellman Assumption.

But is equivalent to it in the ROM (Random Oracle Model).

Note: For semantic security it is sufficient to take (E,D) to be one-time secure, which was the proposal in the original El-Gamal scheme

CCA security?

In the CCA game the adversary gets additional infromation: Decryption oracle.

Adv can send (g^b, c) to the challenger who replies with $m = D(H(g^{ab}), c)$.

Suppose the underlying (E,D) is an authenticated encryption.

Intuitively, this seems to imply that the resulting El-Gamal scheme is CCA secure:

the decryption oracle is useless, since it decrypts (g^b, c) only if adv knows g^{ab} .

This is the case, since o.w., the key $K=H(g^{ab})$ is random and the fact that (E,D)

is an authenticated encryption implies that the adv cannot produce a valid ct corresponding to the key K.

But if the adv knows g^{ab} , then the decryption oracle is useless!

Nevertheless, we can't prove that El-Gamal is CCA secure under CDH (in the random oracle model).

The reason is that the adversary may "not know if he knows g^{ab} " and the decryption oracle will give the adv this information.

We can prove that it is CCA secure under the interactive DH assumption:

Challenger

$$\begin{array}{c}
g^{a}, g^{b} \\
\downarrow u, v \\
\hline
0 \text{ if } u^{a} = v \\
1 \text{ o.w.}$$
Adv

Adv cannot learn gab except with negl prob.

Note:

There are variants of El-Gamal that are CCA secure under CDH, and also ones that do not rely on ROM! (Go to 6.857 and 6.875 for details!)