Today: Privacy with utility

Recall: We had a module on platform security, where we showed how +o

completely hide a message using encryption.

Today: What if we want +o hide the message but at the same time
leak some specific information, for the sake of utility?

Thivgs become much more complicated...

Preview to advanced +opics in cryptography (some which are covered in ¢.575)

Examples:
1. Evcrypted email

Suppose we want to hide the content of the emails that we recieve.
why would we want +o hide this data?

1. Data gets stolen.
2. Data gets wisused or abused.

3. Data gets mispurposed in ways that we don't expect.

Lets hide our emails using a public-key encryption scheme!

If we use a secret key schewme we will veed +o preshare a secret key with everyove

who sends us an email...

Hidlnq the content of our emails comes at a big price!

EXx. We cawvot use spam filters!

Goal: Encrypt our emails but leak only whether it is a spam or vot.

The spam filter is a function F that takes as input a message WM and outputs 0 or 1,

corres;:owdlw@ o spam or not spam.

Tdea: Use a special encryption scheme that given sk avd F,
allows +o geverate a special secret-key sk(F) such that:
@Given Enc(sk,M), sk(F), ove can efficiently compute F(m), but learn vothing

more about WMI

This is called a fumctional encryption scheme.

Constructing a functional encryption scheme is quite difficult!

Known constructions are highly inefficient,

Constructing a functional encryption scheme that allows +o leak a *single* fumetional key sk(F)
has been constructed in 2013 from LWE (Learving with Errer), which is a stawndard

eryptographic assumption

Constructing a functional encryption scheme that allows +o leak many functional secret keys

seems +o be significantly more challanging and is equivalent +o indistinguishable obfuscation.

2. Obfuscation: The goal is to publish a program that leaks wothing except the

input/output behavior of the program.

This is one of the most important goals in cryptography today!

Owe can use program obfuscation to construct almost any cryptographic primitive

we can Hivk of, and more!
Example: Software updates.

Suppose a software company found a bug in their seftware and wants +o post an update,

but does vot wish +o reveal the Iawa!

Unfortunately, constructing (and evew defining) the notion of obfuscation is very tricky!

There has been a recent breakthrough showing how +to obtain "indistinguishability obfuscation”,

This is extremely useful for cryptographyll!
Unfortunately, is extremely inefficiewt.

Both functional encryption and obfuscation seem far from practical.

There are a few examples of privacy with utility that seem +o be easier,

and are used in practice.

3. Zero-knowledge proofs:

Suppose T want to prove to you the validity of a statement

without revealing any information about why the statement is +rue?

This is called a zero-kvowledge proof (ZKP),

and is one of the magjical concepts of eryptography, invented in +he mid B0s.

The reason it is so magical is that at first sight, it is clearly impossible!
The reason is that a proof is information!

For example, T can use i+ +o convince others that the statement is true.

As we said throughout this course,

eryptography is the art of making the impossivle possible!

Zero-kmowledge is made possible by changing the classical model of a proof,

+o allow +he proofs +o be interactive and randomized!

T+t is remarkable that even though proofs were around for thousands of years,

they were studied by ancient greeks, starting from Euclid, and were developed into an active
area in mathematics, called proof theory, throughout these years, proofs always consisted of a
of a single document, that could be deemed +o be either "valid® or “invalid',

This changed with the introduction of zero-kmowledge proofs!

Twteractive Proofs:

An interactive proof is an interactive and probabilistic protocol between a prover and an efficient verifier,
If the statement is true, then an hovest prover can convince +he verifier +o accept with probability 1.

If the statement is false, any malicious prover can cowvince the verifier +o accept only with small probability.

"Theorem™: Ay proof can be converted into a zero-kuowledge interactive proof,

Zero-knowledge proofs are used i practice.

They are used for authentication: A user proves that he "mews" a secret key using a ZK proof,

They are used on the block-chain to shield +the transactions, which are kown +o reveal private information,

4. Secure multi-party computation (MPC)

Allows a set of entities +o jointly do a computation on their sensitive data, and learn only the output,

without revealing anything more about their sensitive data,

Again, the goal here is 1o hide the sensitive data, but at the same time 1o learn the output.

Example: This can allow hospitals to do joint computations on their sensitive patient data.,

Next class, we will +alk about what 1o do if the output you want +o learn contains sewnsitive information,

Starting from the mid BD's we know how +o compute any multi-party function securely,
This uses very interesting +ools (which we did ot discuss in class), such as secret sharing,

oblivious transfer, commitments, and also ZK proofs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

