
Introduction to Encryption
6.1600 Course Staff: Henry Corrigan-Gibbs, Yael Kalai, Ben
Kettle (TA), Nickolai Zeldovich

Fall 2022

Disclaimer: This set of notes is
a work in progress. It may have
errors and be missing citations. It
is certainly incomplete. Please let
the staff know of any errors that
you find.

So far, we have explored methods for authenticating data—verifying
that it has not been modified in transit. However, the integrity-
protection mechanisms we have discussed provide no confidentiality: a
network eavesdropper can still view everything that we send over the
network.

In this chapter, we will discuss encryption, which allow two parties
to exchange messages over an insecure network while hiding the
contents of their communications.

We will cover encryption in a sequence of steps:

• First, we will construct an encryption scheme with a weak form of
security for fixed-length messages for settings in which the sender
and recipient have a shared secret key.

• Next, we will show how to extend this scheme to support variable-
length messages.

• Then, we will show how to improve the scheme to have a strong
form of security.

• Finally, we will show how to implement encryption in settings in
which the sender and recipient have no shared secrets.

At the conclusion of this part, we will discuss how deployed sys-
tems use encryption, and we will think about some problems that
encryption does not solve.

1 Background

The need for encryption The internet is a massive network of wifi
access points, routers, switches, undersea cables, DNS servers, and
much more. There are many, many devices for a potential adversary
to compromise and many vantage points from which an attacker
can observe network traffic. Every single hop your packets take is a
potential point of compromise.

To make matters worse, most standard network protocols provide
no authentication or encryption: in Ethernet, IP, DNS, email, HTTP, and
others, an adversary is free to modify and read the traffic we send
and receive. Protecting confidentiality typically requires augmenting
these standard network protocols with some form of authentication
and encryption.

introduction to encryption 2

Systems using encryption Encryption shows up in a large number of
deployed systems. A few examples are:

• Messaging apps, such as WhatsApp, Signal, and iMessage, en-
crypt traffic between app users so that the server cannot easily
read it.

• Network protocols, such as SSH and HTTPS use encryption to
protect traffic between a service’s clients and servers.

• File-storage systems use encryption to protect data at rest. So if
a thief steals your laptop, they will not easily be able to read the
encrypted files on your hard disk.

2 Encryption Scheme Syntax

Encryption schemes are defined with respect to a key space K, a
message spaceM, and a ciphertext space C. For now, think of K =

M = {0, 1}n and C = {0, 1}2n, for a security parameter n. An Remember that in practice, we will
often take the size of the keyspace |K|
to be at least 2128 to prevent brute-force
key-guessing attacks.

encryption scheme then consists of two algorithms:

• Enc : K×M→ C

• Dec : K× C →M As we will see later on, the decryption
algorithm Dec can sometimes output
“FAIL” or ⊥.The definition of correctness for an encryption scheme just states

that if you encrypt a message m with a key k, and then you decrypt
the resulting ciphertext with the same key k, you end up with the
same message m that you started with:

Definition 2.1 (Encryption Scheme, Correctness). An encryption
scheme is correct if, for all keys k ∈ K and all messages m ∈ M,
Dec(k,Enc(k, m)) = m.

Defining security for encryption scheme is tricky business. Many
of the most obvious security definitions are insufficient:

• Bad definition: “An encryption scheme is secure if it is infeasible for
an attacker to recover the plaintext message given only a ciphertext. This
definition admits encryption schemes in which the ciphertext leaks
half of the plaintext bits.

• Bad definition: “An encryption scheme is secure if it is infeasible
for an attacker to recover any bit of the plaintext message given only a
ciphertext. This definition admits encryption schemes in which the
ciphertext leaks the parity of the plaintext bits.

The starting-point (weak) security definition we will use is called
indistinguishability under adaptive chosen plaintext attack (IND-CPA).

introduction to encryption 3

Intuitively, a scheme is CPA-secure if an attacker cannot tell which of
two chosen messages are encrypted, even after seeing encryptions of
many attacker-chosen messages.

Definition 2.2 (Encryption Scheme, CPA Security (weak)). Formally,
an encryption scheme (Enc,Dec) over message spaceM and key
space K is CPA-secure if all efficient adversaries win the following
game with probability at most 1

2 + “negligible:”

• The challenger samples b←R {0, 1} and k←R K.
• Polynomially many times: // Chosen-plaintext queries

– The adversary sends the challenger a message mi ∈ M

– The challenger replies with ci ← Enc(k, mi).

• The adversary then sends two messages m∗0 , m∗1 ∈ M to the
challenger. (We require

∣∣m∗0∣∣ = ∣∣m∗1∣∣.) Standard encryption systems do not
hide the length of the message being
encrypted. So, if the message spaceM
contains messages of different lengths,
our security definition requires the
adversary to distinguish the encryption
of two messages of the same length.

• The challenger replies with c∗ ← Enc(k, m∗b).
• The adversary outputs a value b′ ∈ {0, 1}. The adversary wins if

b = b′.

One potentially surprising consequence of the CPA-security defini-
tion for encryption schemes is:

For an encryption scheme to be secure in any meaningful sense,
the encryption algorithm must be randomized.

In contrast, secure MACs can be—and
typically are—deterministic!If the encryption algorithm is deterministic (i.e., not randomized),

an attacker can win the CPA security game in Definition 2.2 with
probability 1. To do so:

• The attacker first asks for encryption of a message m0 and receives
a ciphertext c0.

• Then, the attacker attacker choose a message m1 ̸= m0 and sends
(m∗0 , m∗1) = (m0, m1) to the challenger and receives the challenge
ciphertext c∗.

• If c∗ = c0, the attacker outputs 0. Otherwise, the attacker outputs
1.

Deterministic encryption schemes are not only broken in theory,
they are also broken in practice. For example, if you encrypt the
pixels of an image using a deterministic encryption scheme, the
encrypted image essentially reveals the plaintext image.

Why CPA security is a “weak” form of security There are two reasons
why CPA security is a weak or insufficient definition of security for
an encryption scheme:

introduction to encryption 4

• First, the CPA security definition guarantees nothing about mes-
sage integrity: an attacker can modify the ciphertext and poten-
tially change the meaning of the encrypted message in a mean-
ingful way (even if the attacker does not know the encrypted
message!).

• Second, the CPA security definition guarantees nothing in the
event that the adversary can obtain decryptions of ciphertexts of
its choosing. In practice, attackers can often obtain decryptions of
chosen ciphertexts. for example, in a system where a client sends
encrypted messages to a server and the server does something
in response, an attacker can send encrypted queries to the server
and observe its behavior to learn some function of the decrypted
contents of the message. Later on, we will expand our definition to
include these chosen ciphertext attacks.

3 One-time Pad

The one-time pad is perhaps the simplest encryption scheme. Its
keyspace, message space, and ciphertext space are all the set of n-bit
strings. The algorithms are then:

• Enc(k, m)→ c. Compute c← (k⊕m).

• Dec(k, c)→ m. Compute m′ ← (k⊕ c).

The encryption scheme is correct since Dec(k,Enc(k, m)) = k ⊕
(k⊕m) = m. A less obvious fact is that it is also one-time secure: if an
attacker sees only one message with encrypted a one-time-pad key k,
it learns nothing about the underlying plaintext. The one-time pad is actually one-

time secure in a very strong sense: it
protects confidentiality even against a
computationally unbounded attacker—
one that can perform arbitrary amounts
of computation.

The “two-time pad” attack The one-time pad is insecure if the same
key k is every used to encrypt two messages. In particular, if two
ciphertexts are ever computed using the same key, we have:

c1 = k⊕m1

c2 = k⊕m2

c1 ⊕ c2 = (k⊕m1)⊕ (k⊕m2) = m1 ⊕m2.

The attacker then learns the XOR of the two encrypted messages,
which is often enough to leak all sorts of sensitive information about
the plaintext. For example, if the attacker knows some bits of m1, it
can learn some bits of m2.

Why the one-time pad is useful The one-time pad encryption scheme
feels in some sense useless: if a secure channel exists through which

introduction to encryption 5

Alice and Bob can exchange an n-bit secret key, they may as well
use that channel to exchange the message itself! There is some merit
still in the one-time pad: it is possible to exchange the key ahead of
time, and then send encrypted messages later on. Diplomats indeed
used the one-time pad in this way throughout the 20th century. They
would exchange huge books of keying material (random strings) and
then use these keys to communicate securely over long distances.

In practice, it is much more convenient to be able to exchange a
short key and then use it to encrypt many long messages.

4 A Weak Encryption Scheme

What we effectively need is a way to generate many bits of random-
looking keys (i.e., keys for the one-time pad encryption scheme) from
a single short random string.

To generate this, we can use a pseudorandom function! In If you forget what a pseudorandom
function is, refer back to ??.particular, we would like a pseudorandom function of the form

F : {0, 1}n × {0, 1}n → {0, 1}n. In practice, we will use AES or another
block cipher as a pseudorandom
function, so we will have n = 128 or so.

Using such a pseudorandom function, we can construct a new
encryption scheme that replaces the truly random keys with pseu-
dorandom keys generated from the pseudorandom function. The
keyspace and message space for this encryption space are {0, 1}n and
the ciphertext space is {0, 1}2n. The algorithms are:

• Enc(k, m)→ c:

– Sample a random value r ←R {0, 1}n. We call this the “nonce.”

– Compute a one-time key k ← F(k, r) using the pseudorandom
function.

– Use this key to compute the ciphertext using the one-time pad:
output c← (r, k⊕m) ∈ {0, 1}2n.

• Dec(k, c):

– Parse the ciphertext c into (r, c′).

– Compute m← c′ ⊕ F(k, r).
While this encryption scheme is CPA-
secure, it provides no message integrity.
For any string ∆ ∈ {0, 1}n, an attacker
can modify a ciphetext (r, c′) to (r, c′ ⊕
∆). This ciphertexts now decrypts to
the original message XORd with the
attacker-chosen string ∆.

Correctness holds by construction. The security argument goes in
three steps:

• First, we argue that if n is large enough, the probability that the
encryption algorithm ever chooses the same r value twice is negli-
gible. By the Birthday Paradox, after encrypt-

ing T messages, the probability of a
repeated r value is O(T2/2n), which is
negligible in the key length n.

• Second, we argue that as long as the encryption algorithm never
chooses the same r value twice, we can replace the values F(k, r)

introduction to encryption 6

with truly random strings. By the security of the pseudorandom
function, the adversary will not notice this change.

• At this point, we can appeal to the security of the one-time pad
scheme to argue that the adversary has no chance of winning the
security game (Definition 2.2).

For security to hold, it is crucial that the probability that the en-
cryption algorithm uses the same encryption nonce r twice be negligi-
bly small. If the encryption algorithm ever selects the same random
nonce r twice, the pad F(k, r) will be identical in two ciphertexts. An
attacker can then apply the two-time-pad attack to recover the XOR
of the two messages.

By the Birthday Paradox, if we sample the nonce from a space of
size 2128, we can expect a collision in 128-bit random values once
around 264 have been generated. Therefore, any single encryption-
key must be used for≪ 264 messages. Cryptographic standards
typically limit the number of bytes that users can encrypt with the
same key to prevent these sorts of problems.

5 Encrypting longer messages: Counter mode

The CPA-secure encryption scheme of Section 4 only allowed en-
crypting messages of a fixed length. We now show how to use
counter-mode encryption to extend this scheme to support messages
of arbitrary length. That is, we will construct an encryption scheme
Enc : K× {0, 1}∗ → {0, 1}∗ for messages of any length. In practice, encryption schemes place

some (large) bound on the length of
encrypted messages. For example,
the AES-GCM cipher has a maximum
message limit of just under 64 GiB.

Counter-mode encryption works much as the CPA-secure encryp-
tion scheme we have already seen in Section 4, except that we split
the message into blocks and encrypt each block separately.

We will use the function ToString : {0, . . . , 2n − 1} → {0, 1}n, which
converts an integer in {0, . . . , 2n − 1} to an n-bit string in the natural
way.

The encryption scheme uses a pseudorandom function F : K ×
{0, 1}n → {0, 1}n. The secret encryption key is a key k ∈ K for the
pseudorandom function. To encrypt a message, we choose a fresh
random value r ←R {0, . . . , 2n − 1} and XOR the ith block of the
message with the value F(k,ToString(r + i mod 2n)).

• Enc(k, m) :

– Split the message m into blocks of n bits: (m1, m2, m3, . . . , mℓ).
The last message block mℓ may be shorter than n bits.

– Sample a random nonce r ←R {0, . . . , 2n − 1}. The nonce is sometimes called an
“initialization vector” or “IV.”

– For i = 1, . . . , ℓ: Compute ci ← mi ⊕ F(k,ToString(r + i mod 2n)).

introduction to encryption 7

(If the last message block mℓ is less than n bits long, truncate the
last ciphertext block cℓ to the length of mℓ.)

– Output the ciphertext c =
(
r, c1, . . . , cℓ).

• Dec(k, c) :

– Parse the ciphertext c as (r, c1, . . . , cℓ), where all values but the
last are exactly n bits long.

– For i = 1, . . . , ℓ: Compute mi ← ci ⊕ F(k,ToString(r + i mod 2n)).
(Truncate mℓ to the length of cℓ.)

– Output the message m = (m1∥ . . . ∥mℓ).

As long as the space of random values r is large enough to ensure
that the encryption routine never evaluates the pseudorandom
function F(k, ·) on the same input twice, this scheme will be CPA
secure.

You may notice that this encryption scheme reveals the length
of the encrypted message to the attacker! This indeed is a potential
risk, but in some sense it is required: if we were to hide the length
of the message, we would need to set some maximum message
length and pad it up to this length. If we did this, encrypting a single
word would necessarily result in a ciphertext equal in length to the
ciphertext of encrypting a movie! This would greatly decrease the
practicality of our encryption scheme. For applications where hiding
the length is especially important, the messages can be padded to
ensure they are all the same length before they are passed to the
encryption scheme.

References

	Background
	Encryption Scheme Syntax
	One-time Pad
	A Weak Encryption Scheme
	Encrypting longer messages: Counter mode

