
Problem 1-1. Message authentication codes Recall that in class we mentioned the hash-
then-MAC paradigm, which uses a MAC for messages of fixed length n (such as AES,
in which case n = 128), and a hash function with range {0, 1}n, to MAC messages of
arbitrary length, by first hashing the message to an element in {0, 1}n and then applying
the underlying MAC to the hash value.

In class we mentioned that for the resulting MAC to be secure the hash function must be
collision resistant, and thus this paradigm cannot be used with AES since its domain con-
sists of messages of length 128, and there does not exist a collision resistant hash function
with 128-bit security that maps to tags of bitlength 128, due to the Birthday Paradox.

In this problem we consider using the hash-then-MAC paradigm with AES but with a
hash function with a secret seed. In particular, consider the following hash function H : It
takes as input a (secret) seed (a1, . . . , at) and a message (M1, . . . ,Mt), where each ai and
Mi is a block of 128 bits. The hash function outputs

H((a1, . . . , at), (M1, . . . ,Mt)) =
t∑

i=1

aiMi.

The arithmetic is done over a finite field of size 2128 (known as the Galois Field and de-
noted by GF[2128]), though how the arithmetic is done is not important, the only important
thing is that the output is in {0, 1}128, and that in every (finite) field (and in particular in
GF[2128]) every non-zero element has an multiplicative inverse.

(a) Define the MAC scheme obtained by applying the hash-then-MAC paradigm
to the hash function H : ({0, 1}128)t × ({0, 1}128)t → {0, 1}128 and AES as the
underlying MAC.

Solution:

MAC′((K, (a1, . . . , at)), (M1, . . . ,Mt)) = MAC(K,H((a1, . . . , at), (M1, . . . ,Mt)))

(b) 1. Recall the attack for the hash-then-MAC using AES and a hash function
without a secret seed (assuming the message space is ({0, 1}128)t for t ≥ 2).
Hint: This attack takes time roughly 264.

Solution: The attack is to generate random messages M1, . . . ,MT ∈ ({0, 1}128)t
until there exists i ∈ [T − 1] such that H(MT ) = H(Mi). Note that H can
be computed by the adversary since it does not have a secret seed! By the
birthday paradox T ≈ 264, and since the messages were chosen at random
from a very large message space (t ≥ 2) then with overwhelming proba-
bility MT ̸= Mi, in which case the adversary can query the signing oracle
for a signature of Mi, and output this signature as a valid signature for
MT .

1



2. Explain why this attack fails if we use the hash function above (with a
secret seed), assuming the attacker sees many fewer than 264 tags. So-

lution: When the hash function has a secret seed the adversary does not
know if H(MT ) = H(Mi), and hence cannot execute the above attack.

3. Is this hash-then-MAC scheme (with H as defined above and AES) secure
if the attacker gets to see more than 264 tags for messages of his choice?
Hint: Use the fact that AES is injective (i.e., if AES(K,M) = AES(K,M ′)
then M = M ′), and the fact that H is a linear function, together with the
fact that one can efficiently solve t linear equations with t variables (using
Gaussian elimination).

Solution: No! An adversary can query the signing oracle to sign many
messages until he finds t collisions; namely, until he finds t message pairs
{Mi,M

′
i}i∈[t] such that Mi ̸= M ′

i and

AES(K,H((a1, . . . , at),Mi)) = AES(K,H((a1, . . . , at),M
′
i)).

This implies that H((a1, . . . , at),Mi) = H((a1, . . . , at),M
′
i), which reveals

one linear equation about the secret a1, . . . , at. Repeating this t times we
get t linear equations about a1, . . . , at, and these linear equations are likely
to be independent. As a result the adversary can find the secret seed
a, . . . , at using Gaussian elimination. Once the adversary finds the seed
he can break the scheme as above.
Here’s a cleverer break that only requires one collision due to Adam Zheng
from Fall 2021’s 6.S060.
Suppose that the CMA adversary obtained 264 tags, and it found a colli-
sion. As noted in the above solution, suppose we have found two mes-
sages M1 ̸= M2 which cause a collision, i.e.,

AES(k,H(a,M1)) = AES(k,H(a,M2)) =⇒ H(a,M1) = H(a,M2)

This implies a ∗M1 = a ∗M2 (where ∗ is the dot product), and thus a ∗
(M1 −M2) = 0,mod2128.
Now have the CMA adversary pick any message M3 (not already submit-
ted to the oracle) which has tag AES(k,H(a,M3)). Then, M3 + (M1 −M2)
also has that tag, since H(a,M3 + (M1 − M2)) = a ∗ (M3 + (M1 − M2))
= a ∗M3 + a ∗ (M1 −M2) = a ∗M3 = H(a,M3) by linearity of H . Since
M1 ̸= M2, M3 + (M1 −M2) ̸= M3.

2



Problem 1-2. Weaknesses of CPA-secure cryptosystems

Let F : K × {0, 1}n → {0, 1}n be a secure pseudorandom function. In class, we saw the
CPA-secure encryption scheme (Enc,Dec) with keyspace K, where

Enc(k,m) :=


r ←R {0, 1}n

c← F (k, r)⊕m

output (r, c)
Dec(k, (r, c)) :=

{
m← F (k, r)⊕ c

output m
.

We will use a secure MAC scheme MAC : K×{0, 1}∗ → {0, 1}n over the same keyspace K.

MIT uses encryption to protect communications between department offices and its cen-
tral payroll system. In particular, the EECS department office and MIT’s payroll office
share a secret encryption key kEnc ←R K and a secret MAC key kMAC ←R K.

On each pay date, a machine in the EECS department sends a sequence of messages to
the payroll office. Each plaintext message is a 54-byte ASCII-encoded string with format:

m = “date:NNNN-NN-NN, mit id:NNNNNNNNN, amount:NNNNNNNNN.NN”,

where each N represents an ASCII-encoded decimal digit (i.e., ASCII values 0x30–0x39).

Unfortunately, the designers of the system make the wrong decision and use MAC-then-
encrypt rather than encrypt-then-MAC. In particular, the EECS department encrypts each
message m as:

ct = Enc(kEnc,m ∥MAC(kMAC,m)).

The machine at the payroll office operates on each ciphertext ct as follows:

•Compute (m′∥t′)← Dec(kEnc, ct).

•Check that the bytes of the string corresponding to the MIT ID number and the pay-
ment amount are valid ASCII decimal digits. If not, send a FORMAT ERROR message
to the EECS machine.

•Check that the date corresponds to today’s date. If not, send a DATE ERRORmessage
to the EECS machine.

•Check that t′ = MAC(kMAC,m
′). If not, send a MAC ERROR message to the EECS

machine.

•Append the (ID,amount) pair to a log file for later processing and send an OK mes-
sage to the EECS machine.

Explain how a network attacker that can intercept ciphertexts and interact with the pay-
roll server can recover all but one of the bits in each secret digit in the plaintexts that
the EECS department sends. Recovering these bits for a single plaintext using your attack
should take no more than than 10,000 interactions with the payroll server.

3



Solution: The attacker intercepts a ciphertext ct and recovers bits from the plaintext one
unknown decimal digit at a time. (The attacker knows the date, since it is just the current
date.) If we view each decimal digit as a 4-bit number, the attacker will be able to recover
all but the least significant bits of the number.

For a number i ∈ {0, . . . , 9}, let ASCII(i) be the ASCII encoding of i as a byte. For a byte b
IS ASCII(b) be the function that returns “1” if the byte is a valid ASCII-encoded decimal
digit and that returns “0” otherwise. For a number i ∈ {0, . . . , 9}, define the fingerprint of
i to be the 16 bits:(

IS ASCII(ASCII(i)⊕ 0x00), . . . , IS ASCII(ASCII(i)⊕ 0x0F)
)
.

You can convince yourself (e.g., with a short Python program) that the only numbers
in {0, . . . , 9} that have the same fingerprint are ones that are the same in their most-
significant 3 bits. So 4 and 5 have the same fingerprint, but 4 and 7 do not. So, know-
ing the fingerprint of a number in {0, . . . , 9} is enough to determine the number’s most
significant three bits.

Next, observe that the attacker in our setting can compute the fingerprint of any of the
unknown digits in the plaintext. To compute the fingerprint of the integer at the bth
position in the plaintext, the attacker runs:

•For σ ∈ {0x00, . . . ,0x0F}:
–Set ct′ ← ct and then ct′[b]← ct[b]⊕ σ.
–Send ct′ to the payroll server.
–If the server replies OK or MAC ERROR, set fσ ← 1, otherwise set fσ ← 0.

•Return (f0x00, . . . , f0x0F) as the fingerprint of the bth digit.

Finally, the attacker can put these ideas to recover the most-significant bits of each un-
known message digit. For each unknown decimal digit in the plaintext, the attacker
computes the fingerprint. The fingerprint then immediately gives the attacker the three
most-significant bits of the unknown digit.

To compute the fingerprint, the attacker generates at most 16 ciphertexts per digit and
there 20 unknown digits in the plaintext. So the attack requires at most 320 interactions
with the payroll server. With a more careful fingerprinting technique, you can reduce the
attack cost further.

4



Problem 1-3. Encryption and RSA

(a) Which of the following security goal(s) does encryption address :
(1) Confidentiality (2) Integrity (3) Sender authentication (4) Non-repudiation.

Solution: Encryption aims to provide confidentiality only. Non-repudiation
is the concept of ensuring that a party in a dispute cannot repudiate, or refute
the validity of a statement or contract.

(b) Suppose you obtain two ciphertexts C,C ′ encrypted using one-time pad, with
key K and its bitwise complement K̄ = K⊕1 respectively. What can you infer
about the corresponding plaintext messages?

Solution: You can obtain m ⊕m . Note that K = K1, therefore, C ⊕ C ⊕ 1 =
(m⊕K)⊕ (m⊕K ⊕ 1)⊕ (1) = m⊕m .

(c) Alice and Bob are using public keys (e1, N1), (e2, N2) respectively. Suppose
you are informed that their RSA moduli N1, N2 are not relatively prime. How
would you break the security of their subsequent communication? It is suffi-
cient to show that you can get ϕ(N1) and ϕ(N2).
Hint: Euclid’s algorithm allows us to compute GCD(x,y) efficiently.

Solution: Since N1, N2 share a common divisor (they are not relatively prime),
let p be the shared prime divisor. Let N1 = p·q and N2 = p·r. p = GCD(N1, N2),
which can be computed efficiently using Euclid’s Algorithm. We do not expect
the solution to outline the algorithm. q = N1/p andr = N2/p can be computed
with the knowledge of p. ϕ(N1) = (p− 1)(q− 1) and ϕ(N2) = (p− 1)(r− 1) can
be computed with the knowledge of p, q, r.

(d) Suppose that a system uses textbook RSA encryption. An attacker wants to
decrypt a ciphertext c to obtain the corresponding confidential plaintext m.
Assume that the victim system readily decrypts arbitrary ciphertexts that the
attacker can choose, except for ciphertext c itself. Show that the attacker can
obtain m from c even under this setting, i.e RSA is not CCA secure.

Solution: We know that c = me mod N ,i.e, the attacker aims to obtain m from
c. To do this, the attacker uses the following scheme.

• Step 1. The attacker chooses a random number ′r′ such that gcd(r,N) = 1.
The attacker encrypts it as using the public key : Cr = re mod N .

5



• Step 2.
He computes C = c · Cr mod N , and asks the system to decrypt C
Let the decryption be M .
By definition of RSA encryption, we know that: M ′ = (C ′)d mod N .
It follows that: C ′ = ((me mod N) · (re mod N)) mod N . = (m · r)e
mod N
Therefore, M ′ = C ′d mod N,M ′ = (m · r)ed mod N
This follows from Fermat’s little theorem and the construction of e, d.
M = (m · r) mod N

• Step 3. The attacker obtains M and recovers the confidential plaintext m
by computing M · r−1 mod N .
M · r1 mod N = m · r · r−1 mod N = m mod N .

• Keep in mind that r has to be chosen such that its multiplicative inverse
modulo N exists. This is true iff gcd(r,N) = 1.

6


