Lecture 4 - Message Authentication Codes
Plan: MACs
- Definition
- PRF
- Construction: Short Msg
- Small mac to big MAC

Last time...

CRHF

\[\begin{align*}
 d_1 &= H(m_{s1}) \\
 d_2 &= H(m_{s2})
\end{align*} \]

Problem: Need to fetch digest of each file?

Today: MAC requires shared secret. How to get?
Message Authentication Codes (MAC)

\[K \in \mathbb{Z}_0, 13^{128} \]

![Diagram of message authentication codes (MAC)]

- How can server be sure that msg came from client & not from attacker?

- Parties share a secret key - e.g. random 128-bit string
 * Why 128 bits?
 * How do they agree on shared secret?

Plan: Client appends an authentication “tag” \(t \) to each msg. Server can check that \((m, t)\) pair is valid before accepting msg \(m \).

For now, we are not trying to hide \(m \) from attacker. ▼ No encryption
MAC Syntax

- **Key space** $K = \{0,1\}^{128}$
- **Msg space** $M = \{0,1\}^{40}$
- **Tag space** $T = \{0,1\}^{128}$

Examples

- $\{0,1\}^a$ for some a
- $\{0,1\}^+$
- $\{0,1\}^{\text{poly}(1)}$

In theory

- $\{0,1\}^*$

One algorithm

$$\text{MAC}(k, m) \rightarrow t$$

Security - What is the right notion?

- Attacker gets to see tags on many msgs of their choosing.
- Cannot produce a tag on new msg.
- Why would we give attacker so much power?

- Defined using a game

 * Can think of challenge as grades for lab assignment - determines a successful attack
MAC Security

Challenger

\(k \in \mathbb{G}_k \)

\(m_i \in \mathcal{M} \)

\(t_i \leftarrow \text{MAC}(k, m_i) \)

\((m^*, t^*) \)

\(\frac{1}{2} \) if \(\text{MAC}(k, m^*) = t^* \)

& \(m^* \notin \{m_1, m_2, \ldots \} \)

0, o.w.

Adversary A

 repeats poly many times

A MAC \(\Xi(\text{MAC, Ver}_S) \) is secure if for all eaves and A

\[\Pr[A \text{ wins in MAC game }] \leq \text{"negligible"} \]

"Existential unforgeability under chosen msg attack" EUF-CMA
General warning:

* You always use a pre-built MAC — never try to build your own.
* Lots of tricky details (padding, etc.) that are easy to mess up.

Common source of sec problems.
MAC for Short Messages

PLAN
1. Construct MAC with gigantic random key. (impractical)
2. Replace long key with short key

We want to construct MAC on n-bit msgs (e.g. \(n = 128 \))

\[
\begin{align*}
\mathcal{M} &= \{0,1\}^n \\
\mathcal{T} &= \{0,1\}^\lambda \\
\mathcal{D} &= \{0,1\}^{2^n}
\end{align*}
\]

Construction

\[
\text{MAC}(k = (r_0, r_1, r_2, \ldots), m) := \text{Output } t_m
\]

Security: To forge MAC on new msg \(m^* \), adv must guess \(r_{m^*} \). \(\Pr[\text{win}] \leq 2^{-\lambda} \)

Problem: Exponentially large key.
Pseudorandom Function (PRF)

We would like to generate a gigantic large random-looking key from a small key.

\[\rightarrow \text{Not possible to generate more "true" randomness.} \]

But, it is possible to generate pseudo-randomness "looks random" to any comp. bounded observer.

Key Primitive: Pseudo-random Function (PRF)

- **Key Space**: \(\mathcal{K} \)
- **Input Space**: \(\mathcal{K} \)
- **Output Space**: \(\mathcal{Y} \)

\[\text{F}: \mathcal{K} \times \mathcal{K} \rightarrow \mathcal{Y} \]

Intuition: If \(k \) is secret, random

\[\text{F}(k,1), \text{F}(k,2), \text{F}(k,3), \ldots \]

all "look random."

We use PRF for many things—not just MAC.
PRF Security

Adv gets to make arbitrary queries to $F(k, \cdot)$ or to random fn. Can’t distinguish \Rightarrow PRF secure.

Challenger (b)

\[
\begin{align*}
\mathcal{C}_b \leftarrow \mathcal{X} \\
\mathcal{S}_0(x) & := F(k, \cdot) \\
\mathcal{S}_1(x) & \leftarrow (\text{Random} \ S_n \text{ from} \ x \rightarrow y) \\
\end{align*}
\]

Adversary \mathcal{A}

\[
\begin{align*}
\mathcal{A} \leftarrow \text{repeats} \\
\end{align*}
\]

\[
\mathcal{S}_b(x) \rightarrow
\]

\[
\text{Let } \mathcal{W}_b \text{ be the event that} \\
\text{A outputs } “1” \text{ in world } b.
\]

\[
\text{PRF}_{\text{Adv}}[\mathcal{A}, F] := | Pr[\mathcal{W}_b] - Pr[\mathcal{W}_s]|
\]

\[
\text{We say a PRF } F \text{ is secure if } \forall \epsilon < \text{adv } \mathcal{A} \nabla \\
\text{PRF}_{\text{Adv}}[\mathcal{A}, F] \leq \text{negl}
\]
Constructing PRF

* As with CRTF, we don't know whether PRFs exist unconditionally. Need assumptions.

* Can build from any "one-way fn" (not obvious)
 - factoring, SHA2, SHA3, etc.

* Most common ones are fixed in govt standards
 - AES block cipher (actually PRP) - 1998

 AES: $K \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$

 - 128 bits
 - 256

 HMAC constructions are also popular PRFs.

 Best attack on AES 128: time $= 2^{126}$

* We just assume that AES is a good PRF

 Could always be wrong.

 BUT, under assumption that AES is secure PRF, can construct secure MAC
MAC for Short Msgs from PRF

Let $F: \mathbb{K} \times \mathbb{X} \rightarrow \mathbb{Y}$ be PRF

MAC Scheme:

$\mathcal{M} = \mathbb{K}$

$\mathcal{Y} = \mathbb{Y}$

$\text{Mac}(k, m) := F(k, m)$

MAC for long msgs?

If you have PRF w/ 256-bit input, can hash with CRHF & memo the hash

$H: \mathbb{M} \rightarrow \mathbb{K}$

$F: \mathbb{K} \times \mathbb{X} \rightarrow \mathbb{Y}$

$\text{Mac}(k, m) := F(k, H(m))$

“Hash-and-Sign”

Problem: CRHF is relatively slow.
Bad Idea

MAC for two-block msg

\[\text{MAC}_{\text{big}}(k, m_1 \| m_2) := \text{MAC}(k, m_1) \| \text{MAC}(k, m_2) \]

Problem: Mix & match attack

Given \(\text{MAC}_{\text{big}}(k, 000 \| m) \) and \(\text{MAC}_{\text{big}}(m \| 000) \) can construct \(\text{MAC}_{\text{big}}(m \| m) \)
MAC for long msgs with keyed hashing

Let $H : \mathcal{K} \times X \to X$

We say that H is a universal hash fn if

$$\Pr_{k \in \mathcal{K}} \left[H(k, m) = H(k, m') \right] \leq \text{negl.}$$

Example: $\mathcal{K} = X = \mathbb{Z}_p$, p prime $\leq 2^{256}$

$$H(k, (m_0, m_1, m_2, \ldots, m_{l-1})) := m_0 + m_k + m_2 k^2 + \ldots + m_{l-1} k^{l-1}$$

$$\Pr_{k \in \mathcal{K}} \left[H(k, m) = H(k, m') \right]$$

$$= \Pr_{k \in \mathcal{K}} \left[H(k, m) - H(k, m') = 0 \right]$$

$$= \Pr_{k \in \mathcal{K}} \left[(m_0 - m'_0) + (m_1 - m'_1) k + (m_2 - m'_2) k^2 + \ldots + (m_{l-1} - m'_{l-1}) k^{l-1} = 0 \right]$$

$$= \Pr \left[\text{non-zero degree } \leq l-1 \text{ poly evaluates to 0 on random point} \right]$$

$$\leq \frac{l-1}{p}$$

Bonus: Can evaluate H in parallel on many cores.
MAC for long msgs: Construction

[Boneh-Shoup Thm 7.7]

PRF: \(F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y} \)

UHF: \(H: \mathcal{K} \times \mathcal{X}^2 \to \mathcal{Y} \)

\[\Rightarrow \text{MAC key space } \mathcal{K}^2 \]

\[\text{msg space } \mathcal{X}^2 \]

\[\text{tag space } \mathcal{Y} \]

\[\text{MAC } (k_1, k_2, m) := F(k_1, H(k_2, m)) \]

Notes:

1. Need \(|\mathcal{X}| \geq 2^{256} \) for 128-bit security

 \[\Rightarrow \text{Can't use with AES PRF!} \]

 \[\Rightarrow \text{B/c of birthday attack on } H \]

2. UHF \(H \) is much faster than SHA256 on machine w/o AVX support for SNA

 \[\approx 4900 \text{ MB/s} \quad \text{UHF (poly1305)} \]

 \[\approx 500 \text{ MB/s} \quad \text{SHA256} \]

 UHF has hidden key \(\Rightarrow \) attacker's job harder
MACs we use in practice

* Typically we use MACs in conjunction with encryption. “AEAD.” AES GCM, ChaCha20-Poly1305

* Underlying MACs look like the UHF construction

* Main difference is that they use a slightly different keyed hash with fresh hash key on each MAC tag (derived from PKE)

 - Slightly stronger security for given choice of hash output size.

* “Carter - Wegman MAC” is most common construction - underlies AES-GCM, Poly1305.

* HMAC is another very popular one based on SHA2, SHA3, etc. instead of AES