Lecture S Digital Signatures

Fall 2023 Corrigan Gibbs & Zeldovieh MIT

Plan	. .
- Definition	
- Many - time	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· ·
	
Last time MAC	This time: Signatures
$ \begin{array}{c} \mathbf{k} \\ \begin{array}{c} \mathbf{k} \\ \begin{array}{c} \mathbf{m}, \operatorname{Mac}(\mathbf{k}, \mathbf{r}) \\ \end{array} \\ \begin{array}{c} \mathbf{k} \\ \end{array} \\ \end{array} $	
Being able to outhaticate gives you chilty to	Can verify / Authenticate msgs without being able to sign
produce new MACO mags	ner ores!
	· · · · · · · · · · · · · · · · · · ·
	· ·

First, recap $MAC : \mathcal{K} \times \mathcal{M} \to \tilde{}$ MAC Security: EUF-CMA Defined by security game saw last time he MAC for short msgs: PRF F: X × X -> Y AES is example of PRF MAC(k, m) = F(k, m) (MSS space χ) * PRF Socurity relies on key being completely to vardom <u>F("0000")</u> MAC for long msgs UHF Hash X × X' -> X & secret key (Msg space X^e) $MAC((k_1, k_2), m) = F(k_1, Hash(k_2, m))$ UHF is a fast "non-onget-graphe" hash fn. Intuition: Until attacker Sinds two msgs that hash to some value, has no infor that can help it forge. (See Book Thrn 7.7]

Digital signatures - Used werywhere on the web for authentication La Certificates, HTTPS, SSH, - Unlike a pen- and - paper signature, can't cut & pute 1-> Sig is bound to deta signed. - Unlike MAC, there are two Keys private signing Key sk public verification key vK/pk The idea of using two keys (public & private) was the revolutionary idea in cryptography in the 20th century (Difie & Hellman) In Followed thousands of yours of shared secrets

Syntax SIn theory, Gen takes the Sec param as input -> (sk, pk) Ger() mEM = msg spra Sign (sk, m) -> G Verify (pk, m, o) -> E0,13 Correctness: Honest verifier accepts houst sigs: V (sk, pn) ~ Gren() ∀ m ∈ M ∀ σ ← Sign(sk, m) Ver:Sy[pk, m, σ)=1.

Almost identical to MAC security Security : Attacke sees sign on many msgs of its choosing. Can't forge a sig on new meg of its choice. EUF-CMA Advesary A Challerger (sh, ph) ← Gen() ple < m; ∈^m ∩ $\sigma_i = S_{Sr}(sk_j m_i)$ <<u>_____</u>m*, ⊂** ↓ { I is Ver(ple, m*, 0*) =] 0 0. w. sig schene E= (Gen, Sign, Ver), adv A, let Sig Adv[A, Z] - Pr[gane atjut is 1]. For secure is V est adv 1 Sig schure E= (Gen, Sign, Ver) is $SigAdv[A, \Sigma] \leq normalized$

Subtle point This desn admits schenes in which it is easy to cook up new valid sigs on mag m given one sig on m. [Has led to attacks] -> ECDSA has this malleability property - Think How an you then defin to prevent? Efficiency We typically care about * Signature size * Size of ph * Signing time No one signature Schene dominates all others in all netrics (=) * Verification time * Assumptions (Sactoring (250?)

Recall: One - way Sunction A fn f X>Y is one vay if Vessadri A $x \in \chi$ $x \in A(S(x))] \leq negl.$ $P_{C}\left[\varsigma(x^{*}) = x \quad x^{*} \leftarrow A(f)\right]$ (Reminder IS $P = NP \implies \exists O \cup F$) Or, in game form Adv Chal xEX S(×) ×× 6 $\begin{cases} 51 \ f \ f(x^*) = f(x) \\ 0 \ o \ w \end{cases}$

Example candidate arfs:
$f_{NA}(x) = SHA25C(x)$
$f_{RF}(x) = PRF(k, ``000000')$
$f_{MAC}(a) := MAC(k_{j}) (occurs)$
OUT's are essentially the workest/simplest
Crypta tal.
to get signitures
of out only hand to invert on a randomly simpled input &
IS f: 80,13 -> 80,13 is OWF, no gnarenter that
$f(00060 - 01 \times)$ is hard to invert
γ_2 γ_2
S(011 ×) is hard to invert
N-1
· · · · · · · · · · · · · · · · · · ·

One-time-Secure signatures (Lamort) [One-time secure = secure if also only sees one] sig under a given ste Msg space $\mathcal{M} = \{0, 1\}^n$ Sec param $\lambda = 128$ $\partial . V.F = \{0, 1\}^n \rightarrow \{0, 1\}^n$ $Gen() \rightarrow (sk, vk)$ Choose 2. random 1-bit strings. $Sh \in \begin{pmatrix} x_{01} & x_{02} & x_{0} \\ x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \end{pmatrix}$ $\frac{f(X_{on})}{f(X_{in})} = \begin{pmatrix} y_{oi}, \dots, y_{on} \\ y_{ii}, \dots, y_{in} \end{pmatrix}$ $v_{k} = \begin{pmatrix} f(x_{01}) & f(x_{02}) \\ f(x_{11}) & f(x_{12}) & f(x_{13}) \end{pmatrix}$ Sign (sh, $M_{i}||M_{1}|| - ||M_{n} \in \{0,1\}^{n}$) $\rightarrow \sigma$ Output she values corresponding to bits of msg $\sigma = \left(X_{m_{1},1} X_{m_{2},2} \cdots X_{m_{n},n} \right)$ Vergy (pk, m, 1 - 1/m, 680,13, 0) -> (0,13) Check V: C[n] $y_{n:i} = f(\tau_i)$ Output 1'' is all accept.

Why are Lanport sigs only one-time secure? $sk \leftarrow \begin{pmatrix} \chi_{01} & \chi_{02} & \chi_{03} \\ \chi_{11} & \chi_{12} & \chi_{13} \end{pmatrix}$ $- - X_{or}$ (Each sig gives away 1/2 of Secret Kieg With 2 sigs can recover all. Why 3 it secure for one-time use? Intuition To sign mt, need to invert f at at least one point. Beware = Intuition is often wrong Pevil in details 15 Security proofs are a useful tool more or less essential in modern crysto

Coperties Corretness By Construction. OWE-TIME SCUR. Security Strategy E adversary that Sorges W.P. E ∃ adv that in vorts O.W.F. wp ≈ E ∋ contradicts our security OWF Challenger ·Os Ad. Xon ,, Xon R X XEX y=f(x) $p|\mathbf{k} = \begin{pmatrix} \mathbf{s}(\mathbf{x}_{01}) & \mathbf{s}(\mathbf{x}_{02}) \\ \mathbf{s}(\mathbf{x}_{11}) & \mathbf{y} \end{pmatrix}$ pk) < <u>m</u> V.p 1/2 FAIL grant w.p / fail, else get x* <____×* mand mi both "avoid" the challence y ESticiency * OWFs are every fast = 00 m/s for AES * Sigs are largo ish = 1° bits for 1=256

	Extension: Signing long Msgs: Hash & sign" Use $H: \{0,1\}^* \rightarrow \{0,1\}^{n-2so}$ CRAF $S:g^2(str, m) := S:g(str, H(m)) \leftarrow Lanport rig for$ $\Lambda - 6:t msgs$ $Ver^2(pk, m, \sigma) := Ver(pk, H(m), \sigma)$										
· ·	• •		Why	not	use	a (keyed)	universal	hrsh fn?	•		
• •	• •			· · · ·	• • •	· · · · · · · ·		· · · · · · · · · ·	•		
									•		
									•		
									•		
									•		
									•		
									•		
• •									•		
• •									•		
		0 0 0									
									•		
		• • •	• • •								
• •		• • •		• • • •	• • •				•		
• •							• • • • • •				

Application = Software Updates Vendor sk, msg., pk2 pr, Sk2 MSy2, pk3 Pk, Sk3 MSg3, pk4 - pk3 * Vendor signs each update with a fresh sk. * Only need one-time security [Not typically used in practice.]

Many-Time Secure Sigs [See Book for citations] We will show how to construct a full-blown (many-time secure) sig schene from any one-time secure schene + PRF ⇒ Sig Sign OUF [Since] OUF =>] PRF] Can use one PRF secret ky to implicitly generate a jigartic tree of sig sks (tree has 2" leaves) Observation: F: 2 × {0, 13 -> sh rand. m" by PEF security. • F(k,"") • Pke F(k, "0") O Cpk • F(z, "1) pk, • F(k, "11") Gpk, F(1, "00") F(k, 'y') • *ff*k, 10")[●] ∫ pk₁₆ phoo From Sk, Can generate pk for each node.

Many-time Sigs ... Will be informel. See Back for Sull description Ger() → S pk=pk= (at root) S k + PRF kay k Sign (sk, m) - o * Pick a leaf e at random. * Sign using sky * Sign each pair of view using sh = s" parent node" in tree. * Publish all sigs and uses on path to root + Siblings Signature consists of O pke signs of σ. pk. pk, Qpk, O pko ه' Signs o, pk. pk. 0 · .0. PKos pk ol PKIN MSq Dy

Many-time Sigs (cont'd)												
$Ver(pk, m, \sigma)$:												
		Ver.fy	Chairo	ez 2	.ک	down	to	leers				
		· · · · · · · ·	· · · · · ·	· · · · · ·		· · · · · ·	· · ·	· · · · · · ·				
· · ·		· · · · · · · ·	· · · · · ·	· · · · · ·		· · · · · ·	· · ·	· · · · · · ·				
· · ·		· · · · · · · ·	· · · · · ·	· · · · · ·		· · · · · ·	· · ·	· · · · · · ·				
• • •		· · · · · · · ·	· · · · · ·	· · · · · ·	••••	· · · · · ·	· · ·	· · · · · · ·				
· · ·	· · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·		· · · · · ·	· · ·	· · · · · · ·				
• • •	· · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·		· · · · · ·	· · ·	· · · · · · ·				
· · ·	· · · ·	· · · · · · · ·	· · · · · ·	· · · · · ·	• • •	· · · · · ·	· · ·	· · · · · · ·				
• • •		· · · · · · · ·	· · · · · ·	· · · · · ·	• • •	· · · · ·	· · ·	· · · · · · ·				
••••			· · · · ·					· · · · · · ·				
• • •								· · · · · · ·				
		· · · · · · · ·		· · · · · ·	• • •			· · · · · · ·				
· · ·							· · ·					
							0 0 0					