Lecture 8: Anthenticated Encryption

MIT - G. 1600 Fall 2023 Corrigon-Gibbr & Zeldovich

Pan	· · · · · · · · · · · · ·	· · · · · · · · ·	· · · ·	· · · ·	· · · · · · ·
-> Review	CPA Security				
- Why C	PA is insuf	faient			
- Anthentic	CPA is insufficiated encryption crypt then MA		· · · ·	• • • •	· · · · · · ·
* Enc * (()	A security				
- Kecap e	=f symmetric-ke	y primitives			
· · · · · · · · ·			· · · ·		
· · · · · · · · ·			· · · ·	· · · ·	· · · · · · ·
· · · · · · · · ·		· · · · · · ·			
· · · · · · · · ·			· · · ·	· · · ·	· · · · · · ·
· · · · · · · · ·					
· · · · · · · · ·		· · · · · · · ·	· · · · ·	· · · · ·	· · · · · · ·
	· · · · · · · · · · · · ·				
	· · · · · · · · · · · ·				

Encryption with a shared secret						
(Enc, Dec)	0					
· · · · · · · · · · · · · · · · · · ·	0					
$C = Ct \in Enc(k,m)$	•					
$ \begin{array}{c} \bigcirc \\ \uparrow \\ \uparrow \end{array} $	•					
$m \in Dec(k, m)$	•					
· · · · · · · · · · · · · · · · · · ·	•					
· · · · · · · · · · · · · · · · · · ·	•					
· · · · · · · · · · · · · · · · · · ·	•					
· · · · · · · · · · · · · · · · · · ·	•					
	•					
	•					
· · · · · · · · · · · · · · · · · · ·	•					
· · · · · · · · · · · · · · · · · · ·						
	•					

Recap CPA Security Enc X×M→C $\begin{array}{c} \text{Onallorger(b)} \\ \text{M}_{i}^{(o)} \\ \text{M}_{i}^{(o)}$ Adv $Enc(h, M_i^{(b)})$ Enc scheme is CPA secure if b'El no adv can distiguish world b=0 from wold b=1. b' 6 (0,13 CPA Secure encryption from PRF $F: \mathcal{K} \times [M] \rightarrow [0,]$ nh sg Enc(k,m) =F(k, en) F(k, ens) F(k, ens) F(e.a) Decryption essentially sam as encryption. IV" RANDOMIZEDY

CPA Security is not enough. Example SSH server Using CPA-secure enc O = CtextDec(K,·) rm * = <u>le 1e0004</u> evil key points i) Adv Can de lots of Jamage Wo learning encrypted mag-e.g. mas decrypts to 2) App-level failures can let MSg How could A learn that failure occurred? * B could reply u/ mag of varying len XB could throw error * B could reply in Off time * B could perform other action

Example: CBC Padding Oracle * CBC is a "mode of operation" like AES-GCM * Essentially deprecented * Required msg to be padded to multiple of 128 bits/ 16 bytes Simplified ? Last block + |n|: |s|: |s|+ |m|= n|s|g|+ 44 Put 4, in last bytes to indicate 4 podeling bytes In CBC mode, decryptor would * decrypt ciphertext * Check whether podding well formed * IS not, throw error \rightarrow (\mathcal{A}) <u>ر</u> OK E evror the With a few queres per byte, can recover msq

Authenticated encryption ("Gold standard" sec def) Syntax: (Enc, Dec) as before. The type sig of decryption routine is now Dec: X× C→MU{13 = fail no may output (Enc, Dec) is AE if 1) Is CPA - secure and 2) Satisfies "cteat integrity" (Valid Ciphertexts Adv wins if C^{*} = {EC1, ..., Cn} and De(k, =>) '= reject Adv wins f $c^* \notin \{c_1, \dots, c_n\}$ and $De(k, z^*) = reject$ Enc schene has cleat integrity if V eff dus A Pr[A wins cleat int. gana] < "neg!" AE Security => CCA security. (strong) " => Msg integrity AE is "gold Standard" for enc &curity. L> AEAD = AE + as sociated (auth but not enc.) data

Constructing AE schemes "Encrypt then MAC" -> As easy as it sounds - Works with a "strong MAC" (Game 9.1 in Borch-Shoup) La Given many (m,t) pairs on chosen mags hand to cook up a new valid (m*, t*) pair. -Independent keys for M both parts (PRF) LEnc(Kenc,) - AES-GCM is standard ot tag GTR mode + GMAC - ChaCha-Poly 1305 :1 another 1 MAC(kmac,) To decrypt: 1) Check MAC on ct First. IS bod, FAIL. 2) Then decrypt. (Don't even peek at msg before checking MAC.) Sanity check Why does enc-then-MAC provide ctext integrity? * To get decryptor to decrypt, must produce new (ct, tag) pair * Not possible by MAC security .

Encrypt-then-MAC is the safe way to combine enc 6 MAC * AES-GCM = AES-CTR then GMAC * Also common = Chacha 20 + Poly 130smac end of lecture * Well-designed crypto APIs hardle this for your It's possible to construct AE directly from PRP (AES) 43 OCB mode is one example L> Can be faster than generic encrypt & MAC (+ OCB is!) L> Why don't we use it? Sad story (?) What do people often ness up? X Same key for enc & MAC × MAC doesn't cover whole ctext (e.g. IV) * Provide data to application before checking MAC on entire ctext

CCA Security CPA-secure: Adv can see enorgition Lubat is adv can see decryptions? msgs of its choice £ Principle of CCA Sec Des: - Adv shouldn't be able to dist enc of mo from m, - Even if it can ask for enc of many mass of its choice AND Can ask for decryption of any ctext except answers to prior enc querics.

<u>CCA</u> Desinition Adv M⁽⁰⁾ m⁽¹⁾ Chal (b) KER s.t. $|\mathbf{m}_{i}^{(o)}| = |\mathbf{m}_{i}^{(i)}|$ Encryption queries $C_i \leftarrow Enc(k_j m_i^{(b)})$ <<u>د</u> Dec(K,Ĉj) 5 ĉj¢{\$4,4.3 Decryption queries b'e {0,1} Let $W_{6} = Event$ that adv outputs 1 in world $b \in \{0,1\}$ CCA Security Defn (Enc, Dec) is CCA secure if V eff and v A \exists regl for st. $|P_r[w_o] - P_r[w_i] | \leq \text{Negl}.$ Adv is very powerful here. AND adv's good is very weak => Strong security Strangest possible??? No.

Sanity Check-Why ches CPA => CCA Securty? Ctext integrity Idea * Ctext integrity means that quaries will output "Sail" all durytion * Then we're back to CPA gone * CPA says attacker can't win. CCA Observations * OCA sec => CPA &c => CCA nust be word/stateful * CCA cts cannot be "malleable" at all ct i ct ast for dec f ct

Bad Ideas MAC-then-encrypt La Many many attacks (SSL) La Basic idea: "padding oracle" Encrypt - and - MAC Lo Used in SSM (old vorsions) Fundamental dea: If enc scheme is CCA secure secure adv annot learn any info on result of decrypting adv-chosen ct MAC-then encrypt & encrypt-and-MAC don't guarantee in general.

Before we leave symmetric-key crypto, I wanted to mention a few other concepts you might hear. So far f: {0,13 -> (0,13 OWF Given y=f(x) st. x = {0,1}" hard to find x' s.t. f(x')=y. F. K × {0,13 > {0,13 PRF: F(K,) "looks like" a random fr from {0,1}" = 50,1]"

G: EO, 13 -> 2013 100 " PRG Stretch a short random string into a long pseudo-randon string. {G(s): s= {0,13} } ~ {r: r= {0,13} Can build from PRF F: [9,13" × [9,13" - 39,13" G(s) := (F(s,0) || F(s,1) || --- || F(s,99))Pseudorandom by 7RF Security PRP: Pair F,F": % × (9,13" -> (9,13" s.+ (1) F is PRC (2) { KEX Y × € { 9,1} $\mathbf{x} = \left[\sum_{i=1}^{n} \sum_{j=1}^{n-1} \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\mathbf{k}_{i} \right) \right) \right]$ * AES is actually a PRP. - why? * N.B F(k, ·) cannot have collisions! * Use AES as PRF. okay until at sees 2" blucks -> Birthday!

All equally powerful in theory terms. PRACTICE THEORY HILL Inned ate PRG GGM tree Counter mode Ctr de RF ChaCh 10 Imredio Luby-Rack-Sf "Switching lemma" ORF AES