Lecture 10: key Exchange

MIT - 6.1600
fall 2023
Carigan -Gibbs 8
zeldowich
$P l_{a n}$

* Anonymous key exchange
* DH Protocol
* Pub-bey encryption
* Elliptic curve crypto

$$
\frac{\text { Midterm exam }}{10 / 25-\text { Sane room }}
$$

$\underbrace{\text { Revia recitation }}_{10 / 20-11 a m}$ (2-105)

So far...
MAC - Auth w shared Kew
Sis - Auth wo shared key
Secret key enc-Enc w/ shared key
Key exchange ob - Enc wo shared ky public -key enc K Today?

DIt key exchange is (arguably) the simplest \& most beautiful crypto protocol there is

- Beartisnl theory
- works in practice
- Solves a problem people are about

Turned cryptogrinphy upside down :- 19705
\rightarrow Hard to ingire what c-comnerce would look like who ky exchange
L The DH paper introduced PKC Q RSA , etc. .
\rightarrow Inspired by Mark's find project in undengad dasz
Can build all crypto primitives nerve son so far from OWF - old -school crypto
\rightarrow Key ex seems to require stronger assumptions

Anonymous key exchange
N.B. This is a toy protocol - see book for details on auth key exchange.

$$
\left(s k_{A}, p h_{A}\right) \leftarrow \operatorname{Gen}() \quad \rho k_{A} \quad\left(s k_{3}, \rho k_{B}\right) \in \operatorname{Cien}()
$$

Alice
k

passive admentary
see all tragic b/w Alias \& Bob

In practice, A \& B are all phone b server, etc.
Key ex. used everywhere: SSH, HTTPS, TLS, whats App,...
\rightarrow essentially wherever using enorgtion
\longrightarrow Runs on essentially emmy nee TS connection
In practice, need authenticated key ex.
\rightarrow Not as easy as adding sigs.
$\rightarrow \widehat{68}(1)$ pages in Boneti-shoup about it (Ch. 21)
\Rightarrow Just use TLS - takes care of most details for you

Formally, anon they exchange over key space $O \alpha$

$$
\begin{aligned}
& * \operatorname{Gen}() \rightarrow(s k, p k) \\
& * \operatorname{Derive}\left(s k_{A}, p_{B}\right) \rightarrow k \in R
\end{aligned}
$$

Correctness: $A \& B$ agree on shard secret.

$$
\begin{aligned}
& \forall\left(s k_{\rho}, p k_{A}\right) \leftarrow G_{1} \operatorname{erl}() \\
& \quad\left(s k_{B}, p k_{B}\right) \not G \operatorname{Gen}() \\
& \quad \operatorname{Derire}\left(s k_{A}, p k_{\beta}\right)=\operatorname{Derire}\left(s k_{B}, p k_{A}\right)
\end{aligned}
$$

Security: Adv cant' guess key k given plus. \forall eff adv A

Otter want stronger sec prop: $\{k\} \approx\{$ random $\}$;
$\left\{\begin{array}{l}\text { see notes } \\ {\left[\begin{array}{l}\text { Can got by using Hash }(k) \text { as key, modelling hash } f_{n} \\ \text { as a random oracle }\end{array}\right]}\end{array}\right.$

Can you build key exchange from OWF? \rightarrow seem 3 unlikely bot no one knows.

$$
\begin{aligned}
& \text { We can build from } \begin{aligned}
& \times R S A \text { (trapdoor ow) } \\
& \times D H \text { problem } \\
& \times \text { Thentitica problems } \\
& \text { quantion }
\end{aligned} \\
& \text { (learning with errors") }
\end{aligned}
$$

The Diffie-Hellman protocol..
Parameters: $* \operatorname{big}(\approx 2048$-bit) prime p
$\longrightarrow \approx \lambda$-bit prime, os in RSA

* "generator" $g \in \mathbb{Z}_{p}<-\{0,1,2, \ldots, p-1\}$
${ }^{l}$ can sometimes just be $g=2$
Note: Order 9 can be $\ll \rho$
* integer q ("order") st. often $q=2^{286}$

$$
\{\underbrace{g, g^{2}, 9^{3}, \ldots, g^{q}}_{\text {order }}, g, g^{2}, g^{3}, \ldots\}
$$

Must choose order (ρ, q, q) carefully! Listed in $\begin{aligned} & \text { NIST secs, } \\ & \text { N }\end{aligned}$

$$
\operatorname{Gen}() \rightarrow\left\{\begin{array}{l}
a \leftarrow \mathbb{Z}_{q} \\
A \leftarrow g^{a} \in \mathbb{Z}_{p}^{*}\left\{\begin{array}{l}
\text { Notation } g^{a} \in \mathbb{Z}_{p}^{*} \\
g^{a} \text { mo } A \\
\text { return }\left(s k, p^{k}\right) \leftarrow(a, A)
\end{array}\right.
\end{array}\right.
$$

$\operatorname{Devive}\left(s_{k_{A}}=\alpha, \rho_{B}=B \in \mathbb{Z}_{\rho}^{+}\right)$
output $k \leftarrow B^{a} \in \mathbb{Z}_{p}^{*}$

Important Detail: Computing $g^{x}(\bmod p)$.

$$
x \approx 2^{2048}, p=2^{2048}
$$

Bad alg:

1) Compute $9^{x}=2^{2^{2048} \text { evporatially }}$
2) Redux mod P

Better alg : "Repeated squaring"

$$
g g^{2} g^{4} g^{8} g^{16} g^{32}, g^{2^{2048}(\bmod p)}
$$

To compute $g^{10 n 2}=g^{16} \cdot g^{2} g^{\prime}(\bmod p)$.
Common trick: When g fixed, precompute powers

* Can use bigger table to get a slight speedup

Correctness: $B^{a}=\left(g^{b}\right)^{a}=g^{a b}=\left(g^{a}\right)^{b}=A^{b}$

Security:
Attacker's job. "Computational OH problem" (CDH) Given params (p, g, q) and $\left(g, g^{a}, g^{b}\right)$ for $a, \mathbb{R}_{q} \mathbb{Z}_{q}$ Compute $g^{a b}$

CDH Assumption: N els adv can solve CDH problem.

Related to the simpler discrete-tog problem (dog)
Given: $\left(g, g^{a}\right)$ for $a \nleftarrow^{e} \mathbb{Z}_{n}+$ paraims $^{(p, g, q)}$
Compute: $a \in \mathbb{Z}_{q}$

* If you can solve dog, can solve CDH.
* Ir general, we doit know whether solving CDH is enough to solve dog.... (we do in som special cases)

Warning: Anonymous key exchange provides no guarantees against active attack.

Application: Public-key encryption

* Encryption wo shared secret over nog space In
$\operatorname{Gen}() \rightarrow(s k, p k) \quad 3$ Separate keygen ald

$$
\left.\begin{array}{l}
\operatorname{Enc}\left(\rho^{k}, m\right) \rightarrow c^{t} \\
\operatorname{Dec}(s k, c t) \rightarrow m \text { or } 1
\end{array}\right\} \begin{aligned}
& \text { Different Ley for } \\
& \text { Enc } 8 \text { dec -big dea }
\end{aligned}
$$

As before, we want correctness (nit shown) \& security

* CCA security defier is as in symmetric-key setting except that adv gets public key

PKE from Key exchange - ElGamal Encryption
Uses:

* CCA-seare syon-key enc scheme (E, D), Keyspace OL * Hash fo Hash $\mathbb{Z}_{p}^{+} \rightarrow \mathcal{K}$, model as random orel

Sender
Recipient

$$
\begin{aligned}
& \text { Gen }() \rightarrow\left(x, g^{x}\right) \text { for } x \notin \mathbb{Z}_{q} \\
& \text { Enc }\left(p k=g^{x}, m\right):=\left\{\begin{array}{l}
r \& \mathbb{Z}_{q} \\
\text { Output }\left(R=g^{n}, E\left(\operatorname{Hosh}\left(g^{x_{r}}, m\right)\right)\right.
\end{array}\right. \\
& \operatorname{Dec}(s k=x,(R, c)):=\left\{\begin{array}{l}
k \leftarrow \operatorname{Hash}\left(R^{x}\right)=\operatorname{Hash}\left(g^{x_{r}}\right) \\
\text { output } D(k, c)
\end{array}\right.
\end{aligned}
$$

How hard is dog in \mathbb{R}_{p}^{*} ?

* When order q is "smooth" \Rightarrow d log easy (poly tine)
* When order q is $\lambda-b t$ prime, best alg runs in "subexponential" tine $2^{\lambda^{\prime \prime}}$ ""index. calculus s"
* Shois alg solves dog in poly time on theoretical quantum n cucuta

Much faster than brute force 2^{λ} attack
\Rightarrow Hare to set $1 \gg 128$ to make best attack take tine $>2^{128}$.

In practice $\lambda=2048,4096$.
\Rightarrow Small improvement in \mathbb{Z}_{p}^{*} dos alg or factoring alg coll require us to use gigantic keys to get 128 -bit security.

Elliptic Curve Crypto

- The existence of subexponential-tire dog alms in \mathbb{Z}_{ρ}^{+}(+factoring) motivates search for alternatives
- Ideaः Generalize DH key agreement to setting in which dog is much harder ($2^{1 / 2}$ tire).

Kublitz \& Miller propel this generalization indef in 1985 * Now is the standard.
\rightarrow All mutern patacols use ECC for kg ex b gigs

Arithmetic on elliptic curves
Public params

* prime $\rho=2^{236}$
* group order $q=p-$ typically of is prime
* constants $\left.A, B \in \mathbb{F}_{\rho}\right\}$ in ts mid ρ w

As with \mathbb{C}_{p}^{*}, need to pick params carefully

Object: points $(x, y) \in \mathbb{F}_{p} \times \mathbb{F}_{p}$

$$
\text { st. } y^{2}=x^{3}+A x+B
$$

Operation on points

$$
\left.P \text { 囵 } \begin{array}{c}
* \text { draw line thant } \\
* f_{p} \text { over } x \text {-axis }
\end{array}\right\} \begin{aligned}
& \text { Takes } \\
& \text { Compute }
\end{aligned} \approx 15 \pi_{p} \text { ops to }
$$

Lots of history 8 depth here.
Many clever optimizations and tweaks to improve security.

Point addition is "nice"
-assoc, commute, identity, inverse \Rightarrow commutative group

- As with \mathbb{R}_{p}^{*}, we define order q to be
- Let \mathbb{G}_{9} be points on curve ir π_{1}^{2}
- Define

$$
g^{x} \in \mathbb{G} \equiv g \boxplus g \boxplus g \boxplus g \boxplus \cdots \boxplus g
$$

Order is smallest q st $g^{q}=1$, for all $g \in \mathbb{C}$.
ECDH - DH over elliptic curve

ECDlog Given (p, q, A, B, g) and g^{x} for $x \mathbb{R}^{R} \mathbb{Z}_{q}$ Find x.

Why we like elliptic curves.

* Group order q (size of secret) is $\approx p$
* Best ECDlog alg on certain curves runs in time $\alpha^{\lambda / 2}$ when q is a λ-bt prime \rightarrow Can take $\lambda=256$ (vs $\lambda=2048$ for \mathbb{T}_{p}^{*}) ${ }^{G}$ Ops are faster, keys are shorter. (as $\lambda \rightarrow \infty$)

Neat trick: Point Compression

* Naively, exch EC element is (x, y) point 2×256 pts
* We have $y^{2}=x^{3}+A x+B$.
\rightarrow given an x, there are only 2 possible ys

$$
y= \pm \sqrt{x^{3}+A x+B} \in \mathbb{F}_{p}
$$ modular sq race t

* Represent point (x, y) as $(x, \operatorname{sign}(y)) \Rightarrow 256+1$ bits

Subtleties to elliptic curves

* EC-DSA signatures consist of pair (α, β) where β is the x-coond of EC point
\Rightarrow If (α, β) is valid sis on m, So is $(\alpha,-\beta)$! ("malleubilly")
* When receiving an ostensible EC quint from retwork, need to check that it's on curve before using it.
* Many mathematically equiv ways to represent cum. Some are algorithmically better then others.

Edwards form $x^{2}+y^{2}=1+d x^{2} y^{2} \in \mathbb{F}_{\rho}$

The end?

Can also build key exchange from trapdoor ow P (Glen, F, I) over χ

$$
\begin{aligned}
& \operatorname{Gen}(1) \rightarrow(\text { sh, pk) } \\
& F(p k, x) \rightarrow y \in X \\
& I(s h, y) \rightarrow x \in X
\end{aligned}
$$

Not used as commonly as DH bl of cost of gereating Keys: $\left.\begin{array}{r}R S A: \lambda^{4} \\ D H: \lambda^{3}\end{array}\right\}$ when $\lambda=2000$ this is a

2048i bt koan DSA: 0.22 ms

$$
\text { RSI: } 68 \mathrm{~ms}
$$

