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Useful Facts and Definitions

1 The union bound

Let B1, . . . , Bn be events in a common finite discrete sample space. Then the probability
that any one of the bad events occurs is at most the sum of the probabilities of each bad
event occurring. That is:

Pr[B1 ∪ · · · ∪Bn] ≤ Pr[B1] + · · ·+ Pr[Bn].

The beautiful thing about the union bound is that it is extremely general—it applies
whether the events are independent or not.
In cryptography, we use the union bound all of the time. One common application is to
define “bad” events B1, . . . , Bn and then to use the union bound to bound the probability
that any of them occurs.

2 Linearity of expectation

For a discrete real-valued random variable X taking possible values x1, . . . , xn, the expec-
tation of X is defined as

E [X] =
n∑

i=1

Pr [X = xi] · xi

The expectation is in some sense the “average” value of a random variable.
One extremely useful property of the expectation is that it is linear. That is, given random
variables X1, ..., Xn and X =

∑n
i=1Xi, we have

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi]

In words, the expected value of the sum of random variables is equal to the sum of the
expected values. This is true whether or not the variables are independent.

3 A useful life fact

The following inequality is very handy when dealing with probabilities:

1 + x ≤ ex for all x ∈ R.



2 Handout 2: Useful Facts and Definitions

When x is very close to 1, 1 + x ≈ ex.
For example, say that you flip n coins that come up heads with probability ϵ, and you
want to compute the probability that at least one comes up heads. This probability is one
minus the probability that all n coins come up tails:

1− (1− ϵ)n ≈ 1− exp(ϵn).

So if ϵ ≫ 1/n, you have a good chance of seeing a heads and when ϵ ≪ 1/n, you have a
bad chance of seeing a heads.

4 Concentration inequalities

Concentration inequalities let us bound the probability that a random variable is much
larger or smaller than its expectation. Many computer scientists live happy and success-
ful lives knowing only the following two concentration inequalities. (Okay, you don’t
actually need to know any concentration inequalities to have a happy and successful life,
but they can help!)

Markov’s inequality. Let Y be a discrete random variable taking non-negative real val-
ues. Then for any a > 0,

Pr[Y ≥ a] ≤ E[Y ]

a

A very convenient nice feature of this inequality is that it only depends on the expectation
of the random variable.

Chernoff bounds. When you are dealing with independent random variables (e.g., many
tosses of a fair coin, outputs of a random oracle on distinct inputs), we can get much
stronger concentration bounds. In particular, the probability that the sum of independent
0/1 random variables is t times larger than its expectation is exponentially small in t. To
be concrete, if you flip 10000 fair coins, it is extremely unlikely that you will see only 3
heads. Chernoff bounds capture this intuition formally.
Suppose X1, . . . , Xn are independent random variables taking values in {0, 1}. Let X de-
note their sum and let µ = E[X] denote the sum’s expected value. Then for any β > 0,

• Pr[X > (1 + β)µ] < e−β2µ/3, for 0 < β < 1

• Pr[X > (1 + β)µ] < e−βµ/3, for β > 1

• Pr[X < (1− β)µ] < e−β2µ/2, for 0 < β < 1
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5 Binomial coefficient

The number of way to group n items into k groups is denoted
(
n
k

)
and is pronounced “n

choose k.” These are called binomial coefficients because the coefficient of the monomial xk

in the expansion of (1 + x)n is exactly
(
n
k

)
.

We will probably not need the following inequality for this course, but it may come in
handy later in life: (n

k

)k

≤
(
n

k

)
≤

(ne
k

)k

,

where e ≈ 2.71 . . . is Euler’s constant.


