
Foundations of Computer Security
Massachusetts Institute of Technology
Henry Corrigan-Gibbs, Srini Devadas, Yael Kalai, and Nickolai Zeldovich

December 14, 2021
6.S060 Fall 2021

Final Solutions

Final Solutions

Question Parts Points
1: True or False 10 20
2: User authentication 3 15
3: Symmetric Encryption 2 10
4: Public-Key Encryption 1 10
5: Compress then encrypt 3 15
6: Certificate revocation 2 10
7: Access control 1 5
8: Secure boot 1 5
9: LPN Error Correction 1 5
10: Isolation 2 10
11: Fuzzing 2 10
12: Symbolic execution 2 15
13: Sandbox Sharing 3 15
14: Differential Privacy 1 5
15: Timing Side Channel 4 20
16: Course Survey 4 10
Total: 180

Name:

6.S060 Final Solutions Name: 2 of 24

Problem 1. [20 points] True or False (10 parts)
Please circle T or F for the following. No justification is needed (nor will be considered).

(a) [2 points] One way to construct a CPA-secure encryption scheme is with the “hash-and-
encrypt” paradigm.

Solution: False.

(b) [2 points] The RSA signature scheme is post-quantum secure.

Solution: False.

(c) [2 points] One way to construct a secure signature scheme for arbitrary length messages is
with the “hash-and-sign” paradigm.

Solution: True.

(d) [2 points] Transport-layer security is the protocol that underlies HTTPS.

Solution: True.

(e) [2 points] A CCA-secure encryption scheme must also be CPA-secure.

Solution: True.

(f) [2 points] If a client and server communicate using transport layer security (TLS), an eaves-
dropper in the middle of the network can learn the IP addresses of the client and server.

Solution: True.

(g) [2 points] A CCA-secure encryption scheme hides the length of the plaintext.

Solution: False.

(h) [2 points] It is impossible to update the lowest level Boot Read-Only Memory (ROM) in an
iOS device.

Solution: True.

(i) [2 points] If you live in Belgium and connect to the Internet via a U.S.-based VPN provider,
your Belgian ISP learns no information about your browsing behavior.

Solution: False.

6.S060 Final Solutions Name: 3 of 24

(j) [2 points] You connect to a Google server via an encrypted TLS connection. Your ISP can
distinguish between the cases in which (a) you watch a 30-minute episode of Stephen Colbert
on YouTube and (b) you watch a 30-second cat video.

Solution: True.

6.S060 Final Solutions Name: 4 of 24

Problem 2. [15 points] User authentication (3 parts)
An adversary has compromised the password databases from 128 (27) different servers, each with
1M (220) users. The databases all use hashing and salting for passwords, with 24-bit salts (chosen
at random). Suppose users choose passwords with 10 bits of entropy (i.e., you can think of them
as being random 10-bit values). Assume the adversary has not done any pre-computation before
embarking on their attack. Assume that the password DB compromised by the adversary contains
the salts. For all answers in this question, approximations within a factor of 2 are OK.

(a) [5 points] How many hashes will the adversary need to compute in order to guarantee guess-
ing the password of a specific user on a specific server?

Solution: 210 = 1024.

(b) [5 points] How many hashes will the adversary need to compute in order to guarantee guess-
ing the passwords of all users on a specific server?

Solution: 210× 220 = 230; maybe a bit less for a few salt collisions at random, but within
a factor of two. The number of colliding salts should be within 220−24×220 = 216 << 220.

(c) [5 points] How many hashes will the adversary need to compute in order to guarantee guess-
ing the passwords of all users on all servers?

Solution: Brute-force each password separately: 27 × 220 × 210 = 237.
Compute complete table of possible salted passwords: 210 × 224 = 234. This is the way to
go.

6.S060 Final Solutions Name: 5 of 24

Problem 3. [10 points] Symmetric Encryption (2 parts)

(a) [5 points] Construct a CPA secure symmetric encryption scheme for messages in {0, 1}256
given a CPA secure symmetric encryption scheme for messages in {0, 1}128.

Solution: To encrypt a message M ∈ {0, 1}256 simply parse the message into M =
M1||M2, where M1,M2 ∈ {0, 1}128 and outputs Enc(sk,M1), Enc(sk,M2), where Enc
corresponds to the underlying scheme for messages in {0, 1}128.

(b) [5 points] Show how to upgrade the security to CCA security given a MAC scheme for mes-
sages of arbitrary length.

Solution: To upgrade this scheme to CCA secure simply add a MAC to the outputted
ciphertext.

6.S060 Final Solutions Name: 6 of 24

Problem 4. [10 points] Public-Key Encryption (1 part)
Consider a 2-message key exchange protocol, where party 1 chooses randomness r1 and sends a
message m1, which is a function of r1 (i.e., m1 = m1(r1)), party 2 chooses randomness r2 and
replies with a message m2, which is a function of m1 and r2 (i.e., m2 = m2(r2,m1)), and the
shared secret s can be efficiently computed from (m1, r2) or (m2, r1).

Construct a CPA secure public-key encryption scheme from the key exchange protocol above,
where the weak security guarantee of the key-exchange protocol is that given (m1,m2) generated
as above, it is hard to compute the shared secret s (but s is not necessarily indistinguishable from
uniform given (m1,m2)).

You can assume (for simplicity) that the secret key s is a binary string of length k (for some k),
and that there is a secure hash function H : {0, 1}k → {0, 1}k′ (modelled as a Random Oracle),
and construct an encryption scheme for messages in {0, 1}k′ .

Solution: The KeyGen algorithm is the same as above: It samples randomness r1, computes
m1 = m1(r1), and outputs (sk, pk) = (r1,m1). The encryption algorithm given pk = m1 and
a message m to encrypt, chooses randomness r2, computes s from (m1,m2, r2) and outputs
(m2,m ⊕ H(s)) as the encryption of m. The decryption algorithm given sk = r1 and a
ciphertext (m2,m⊕H(s)), uses m2, r1 to compute s. Then it computes H(s) and uses this to
unmask m⊕H(s), and thus obtain the decrypted message m.

6.S060 Final Solutions Name: 7 of 24

Problem 5. [15 points] Compress then encrypt (3 parts)
You browse to evil.com while using an evil WiFi network, so the attacker can run JavaScript in
your browser and observe your network traffic.

While you are on this evil website, the attacker’s JavaScript causes your browser to load a sequence
of URLs from Google. That is, the attacker can cause your browser to send the following type of
GET request to Google.

GET /ATTACKER_CHOOSES_THIS_URL HTTP/1.1
Host: google.com
Accept: */*
Cookie: SECRET_VALUE_HERE

The Google cookie value is a secret 32-byte hexadecimal string—e.g., 1FAB8AEEC9· · ·9809D9BC02.
(Each hexadecimal character in ASCII takes one byte to represent.)

The GET request travels to Google over an encrypted TLS connection. Recall that TLS encryption
increases the length of the plaintext by a fixed amount.

Say that your browser compresses the GET request string before encrypting it. The compression
algorithm has the property that:

• If there is no repeated 4-byte string in the GET request, the output is L bytes long.

• If there are r repeated 4-byte strings in the GET request, the output is L− r bytes long.

(a) [5 points] Show that if the attacker can guess the first 4 bytes of your Google cookie value, it
can confirm that its guess was correct.

Solution: If your guess for the first 4 bytes is ABCD, make a GET request for URL
/ABCD. Then look at the length of your encrypted packet. If the guess was correct, the
packet will be c+L−1 bytes long, for a known constant c. If not, the packet will be c+L
bytes long.

6.S060 Final Solutions Name: 8 of 24

(b) [5 points] Show that if the attacker can cause your browser to load 216 URLs, it can recover
the first 4 bytes of your Google cookie.

Solution: Run the attack of part (a) on all possible 4-byte hex strings.

(c) [5 points] Show how the attacker can recover your entire Google cookie by loading ≪ 220

URLs. You may assume that the cookie itself contains no repeated 4-byte strings.

Solution: Use part (b) to get the first 4 bytes. Then recover the next 4 bytes by using part
(b) again and again until you have the entire cookie. This takes 8 · · · 216 fetches at most.

6.S060 Final Solutions Name: 9 of 24

Problem 6. [10 points] Certificate revocation (2 parts)
This problem deals with certificate revocation in the public-key infrastructure.

(a) [5 points] The online certificate status protocol (OCSP) works as follows: when your browser
gets a public-key certificate from a server, the certificate contains the URL of an OCSP server,
typically run by the certificate authority who issued the certificate. The client then asks the
OCSP server “Is this certificate <hash of cert> still valid?” The OCSP server responds
with a signed message indicating YES or NO.
Unfortunately, the OCSP server learns which websites the client is visiting. A more recent
technology, called OCSP stapling has the web server (e.g., nytimes.com) fetch a signed
OCSP response from its certificate authority indicating that its certificate is still valid. This
eliminates the privacy concern from the original scheme, but requires the web server to pe-
riodically fetch a new signed attestation from the certificate authority. The OCSP response
includes a timestamp and clients will reject the response if it is too old.
Yet another concern with OCSP that it adds latency to the client’s web browsing experience,
since the client must contact the OCSP server before it completes its connection to the web
server.
To reduce client latency, one option would be to first download the webpage from the web
server (e.g., nytimes.com) and then use OCSP to check the validity of the certificate. If
the certificate is valid, the browser would tear down the browser window and display an error.

What security problems could arise from using OCSP like this?

Solution: If the certificate was revoked because the private key was leaked, the webpage
could potentially contain malware from a network attacker. By the time the OCSP check
completes, the client’s browser may have already executed the malware (e.g., stealing the
client’s cookies, etc.).

6.S060 Final Solutions Name: 10 of 24

(b) [5 points] An alternative to OCSP is certificate revocation lists (CRLs). When using CRLs,
the certificate authority includes in each certificate the URL of a CRL file. The client can fetch
this signed CRL file, which contains a list of all certificates that the certificate authority has
revoked. In this way, the client can check whether a particular certificate has been revoked.
Explain how a malicious certificate authority could abuse this process to learn which clients
are visiting which websites.

Solution: Put a distinct CRL URL in each certificate. Then, by looking at which clients
are visiting which CRL URLs, you can learn which client is looking at which webpage.

6.S060 Final Solutions Name: 11 of 24

Problem 7. [5 points] Access control (1 part)
Ben Bitdiddle is designing a data storage system, and thinks capabilities are great because they
allow for easy delegation. He uses capabilities as the basic access control primitive in his storage
server, in lieu of traditional access control lists: clients must have a capability in order to fetch an
object from his data store.

What problems might Ben run into by using only capabilities?

Solution: Might be hard to track down who has access to any particular piece of data.

Might be hard to revoke capabilities once they leak out.

6.S060 Final Solutions Name: 12 of 24

Problem 8. [5 points] Secure boot (1 part)
Alyssa P. Hacker is building a game console and wants to make sure that the game console hard-
ware can only be used to run authentic games approved by her company. Alyssa wants to achieve
this using secure boot, but wants to avoid checking many signatures during boot, and wants to
avoid having to hard-code a public key at each step of the boot process. Alyssa’s idea is to have
each boot step store a hash of the next step in a designated memory location, and then the final boot
loader will be responsible for checking a signature on all of these hashes together before jumping
to the OS kernel.

Specifically, the boot ROM loads the boot loader from disk, computes a hash of the boot loader,
hboot and stores it in a designated memory location mboot, before jumping to the boot loader. The
boot loader then loads the OS kernel from disk, computes a hash hos and stores it in designated
memory location mos. Then, before jumping to the OS kernel, the boot loader loads the signature
from disk and checks that it’s a valid signature, under the public key embedded in the boot loader,
of hboot||hos. If the signature matches, the boot loader jumps to the OS kernel and proceeds booting.
Otherwise, the boot stops.

Is Alyssa’s scheme secure? Explain why or why not.

Solution: Not secure because the second step (boot loader) can be modified on-disk with a
version that does not do any signature checks at all.

6.S060 Final Solutions Name: 13 of 24

Problem 9. [5 points] LPN Error Correction (1 part)
Recall the LPN based error correction scheme (Lecture 17). n refers to the number of bits in the
secret key s, m is the number of ring oscillator pairs and the number of bits in the helper data b and
noise vector e.

The Gen step determines the b vector and exposes it. The Rep step chooses the n most stable bits
(choosing the n out of m counter values that are the largest absolute values regardless of sign), and
uses the corresponding n equations to solve for s.

Ben Bitdiddle (remember him from 6.004?) decides that he can retain his five customers by mar-
keting his new scheme as providing independent secrets s(k) for each of his customers, k varying
from 1 to 5. That is, he will use the same ring oscillator circuit array to “encode” different s(k)

values into m-bit b(k) vectors in the Gen step. The Rep step is unchanged, given a b(k) vector the
circuit regenerates s(k). Ben claims that his scheme is more general than the original scheme and
has equivalent security. Is Ben correct? Provide a brief explanation.

Solution: No. The LPN problem assumes that the ei values are hidden noise, that is the ei
values are independently generated. Ben is reusing ei values across his k customers so the
problem the adversary faces is not strictly LPN. Note that the s(k) values are independent of
each other, it is the repeated noise that results in weaker security.

6.S060 Final Solutions Name: 14 of 24

Problem 10. [10 points] Isolation (2 parts)

(a) [5 points] Ben Bitdiddle is using virtual machines for isolation. He notices that the cost of
saving and restoring registers when switching between virtual machines is a significant source
of overhead for his workload. Furthermore, he notices that a large part of that cost is due to
saving large floating-point registers, even if the virtual machine didn’t use any floating-point
code.
Ben implements an optimization: instead of saving and restoring floating-point registers when
switching between virtual machines, his virtual machine monitor lets the floating-point reg-
isters remain in-place. However, he configures the processor to trap into the virtual machine
monitor if the virtual machine runs any instructions that access a floating-point register. At
that point, his virtual machine monitor would finally save and restore the floating-point regis-
ters as it would have originally done, and enables the use of floating-point instructions.
Is this optimization secure with respect to the virtual machines providing isolation? You may
assume non-speculative hardware processors. Explain why or why not.

Solution: Two different answers were accepted, one for yes and one for no.
On the one hand, there is no way for one virtual machine to observe or modify the contents
of the floating point register state of another virtual machine, because either the floating-
point instructions are disabled, or the correct FP register state is present.
However, the very fact that one virtual machine used floating-point instructions may be
leaked to another VM via a timing side channel, as the first FP instruction will take longer
in this case.

(b) [5 points] Ben allows virtual machines to dynamically manage their memory allocations. In
particular, he adds special calls from the virtual machine into the virtual machine monitor that
allow the VM to either allocate more pages of memory, or to give some pages of memory back
to the shared global set of free pages. When allocating or freeing memory, the virtual machine
monitor ensures that page tables are properly updated, so that at most one virtual machine has
a page of memory mapped in its page tables at a time.
Does this design provide strong non-interference between virtual machines? Explain why or
why not.

Solution: No: virtual machines will be able to observe when the system runs out of free
pages.
Maybe also no if the virtual machine monitor forgets to clear the contents of pages when
re-allocating them from one VM to another.

6.S060 Final Solutions Name: 15 of 24

Problem 11. [10 points] Fuzzing (2 parts)
Consider the following C function being tested by a fuzzer that supplies random inputs in the 32-
byte input array:

unsigned char input[32];

void f() {
if (input[0] != input[1])

return;

if (input[2] < 128)
return;

if (input[3] > 32)
crash();

}

(a) [5 points] How many inputs, on average, will a purely random (not coverage-guided) fuzzer
need to trigger the call to crash()?

Solution: The probability of any random input triggering a crash is 1
256

× 128
256

× 224
256

=
224

131072
= 7

4096
≈ 0.17%. So, will need about 4096

7
inputs.

(b) [5 points] How many inputs, on average, will a coverage-guided fuzzer need to trigger the
call to crash()?

Solution: On average 128 inputs to get past the first if statement, then 1-2 inputs to get
past the second if statement, then 1 more input to get past the third if statement, for a total
of 130-131.

6.S060 Final Solutions Name: 16 of 24

Problem 12. [15 points] Symbolic execution (2 parts)
Consider the following C function being executed in a symbolic execution system with an arbitrary
symbolic argument x:

void f(unsigned int x) {
if (x % 2 == 0) {

x = x + 1;
}

if (x > 4096) {
return;

}

if (x < 16) {
crash();

}
}

(a) [10 points] Which of the following queries will a symbolic execution issue to its SAT solver?
Check all that apply.

1. ((x mod 2) == 0)

2. ¬((x mod 2) == 0)

3. (x > 4096)

4. ¬(x+ 1 > 4096)

5. (x+ 1 > 4096) ∧ ((x mod 2) == 0)

6. (x+ 1 > 4096) ∧ ¬((x mod 2) == 0)

7. (x < 16) ∧ (x > 4096) ∧ ((x mod 2) == 0)

8. (x < 16) ∧ ¬(x > 4096) ∧ ¬((x mod 2) == 0)

9. ¬(x+ 1 < 16)

10. ¬(x < 16) ∧ (x > 4096) ∧ ¬((x mod 2) == 0)

Solution: 1, 2, 5, 8

6.S060 Final Solutions Name: 17 of 24

(b) [5 points] How many execution paths will the symbolic execution engine explore in executing
f(x)?

Solution: 2× due to the first if statement. After the first if statement, three paths: either
the second if statement returns, or the third if statement crashes, or the function returns
after the third if statement. So, 6 paths total.

6.S060 Final Solutions Name: 18 of 24

Problem 13. [15 points] Sandbox Sharing (3 parts)
Consider the following system where public keys identify users. Users own hardware authentica-
tion tokens running a Python host program. In this process is embedded a WebAssembly instance
which owns the private key and signs messages on the user’s behalf. The instance’s source code is
auth.c (implementation omitted):

static void uint8_t private_key[32];
void key_gen(uint8_t public_key[32]);
void hash(const uint8_t *message, uint16_t message_len,

uint8_t hash_out[32]);
void sign(const uint8_t message_fixed[32], uint8_t signature[64]);

For each of the user’s applications, the Python host embeds the application program in a separate
sandboxed instance. friends.c is the source code for a distributed public key infrastructure
application where users produce signed attestations of friendship (similar to that of lab 2):

void certify_friend(const uint8_t friend_public_key[32],
uint8_t signature[64]) {

sign(friend_public_key, signature);
}

payment.c is the source code for an application where users sign transactions for a payment
system:

void authorize_payment(const uint8_t *payment, uint16_t payment_len,
uint8_t signature[64]) {

uint8_t hash_out[32];
hash(payment, payment_len, hash_out);
sign(hash_out, signature);

}

The programs above are compiled into auth.wasm, friends.wasm, and payment.wasm
before they are instantiated, and the Python host allows the applications to call the hash and
sign functions exported by auth.wasm.

Assume the following:

• private_key is securely confidential to auth.wasm.

• private_key is generated exactly once with key_gen.

• hash implements a collision-resistant hash function.

• sign implements a secure public-key signature scheme.

6.S060 Final Solutions Name: 19 of 24

(a) [5 points] How many bytes are copied from the payment.wasm sandbox to the auth.wasm
sandbox memory by the Python host in a single call of authorize_payment? Explain
your answer.

Solution: 32 (from sign) + payment_len (from hash) bytes. (An answer with an
extra 2 bytes on the stack for payment_len itself, or an extra 4 bytes for each copied
pointer (perhaps with padding for alignment) is also accepted.)

(b) [5 points] Suppose that an attacker can make arbitrary calls to authorize_payment. Can
the attacker certify a malicious public key as a friend? Explain why or why not.

Solution: No. hash is collision-resistant, so it will be intractable for an attacker to get
a valid signature for the malicious public key. Since the sign is a secure public-key
signature scheme, it is infeasible for an attacker to derive a secret key which corresponds
to the output of hash.

(c) [5 points] Suppose that an attacker can make arbitrary calls to certify_friend. Can the
attacker authorize a malicious payment? Explain why or why not.

Solution: Yes. Since the private key is the same between the sandboxes, the attacker can
call certify_friend where the parameter friend_public_key is set to be the
hash of the malicious payment.

6.S060 Final Solutions Name: 20 of 24

Problem 14. [5 points] Differential Privacy (1 part)
Let f be a function over sensitive data sets. The data sets D and D′ both have n records. We will
define the global sensitivity of f as:

S(f) = max
∀dist(D,D′)=1

|f(D)− f(D′)|

where dist(D,D′) = 1 if and only if D′ can be obtained from D by changing one record in D.

Any possible record has a single value that is in between the minimum value a and maximum value
b.

What is the global sensitivity when f is the median?

In order to get ϵ-differential privacy, what noise distribution should we add to the outcome f(D)?

Solution: b − a, since the median can change from a to b, or vice versa, in the worst case.
Noise distribution that needs to be added has mean b−a

ϵ
Lap(0, 1).

6.S060 Final Solutions Name: 21 of 24

Problem 15. [20 points] Timing Side Channel (4 parts)
Recall Lab 5 and the token comparison algorithm that was susceptible to timing attack. Bob now
wants to use it to compare passwords.

Note that in this problem, you should ignore timing differences due to micro-architectural struc-
tures.

(a) [5 points] Bob thinks he has solved the timing issue. Assuming the real password is of length
≥ 1, he hopes his algorithm respects the following properties:

• Correctness: The algorithm will return True if the password provided by the user is the
exact same one as expected.

• Security: The algorithm will return False if the password is not the one expected.
• Timing Independence: The execution timing of the algorithm is independent of the real

password.

Look at the following code snippet.

def check_password(p, real_p):
if len(p) != len(real_p):

return False
result = True
for i in range(len(p)):

result = result and (p[i] == real_p[i])
return result

Can an attacker recover any sensitive information regarding the real password using a timing
attack? Can this have an impact on security?

Solution: The attacker can recover the length of the password. This can weaken secu-
rity as the password is now to be guessed within 0, 1n instead of within 0, 1∗. Futher-
more, some python optimizations might make the "and" operation compute faster once
result==False (i.e. not compute the char comparaison)

6.S060 Final Solutions Name: 22 of 24

(b) [5 points] Bob decides to write another version:

def check_password(p, real_p):
max_idx = len(real_p) - 1
result = True
for i in range(len(p)):

j = min(i, max_idx)
c = real_p[j]
result = result and (p[i] == c)

return result

Can an attacker recover any sensitive information regarding the real password using a timing
attack? Is this code secure as defined in the previous question?

Solution: Yes it is timing independent. No this code is not secure! This code will accept
any substring of the password as a valid password even the empty string(!) Additionally,
longer passwords can be accepted if they contain the real password as a prefix. For in-
stance "Helloo" being accepted when the real password is "Hello"

6.S060 Final Solutions Name: 23 of 24

(c) [5 points] In the next questions, assume that check_password is secure and satisfies tim-
ing independence as defined earlier. Bob would like to use it to perform some access control
into his secure server. He hopes his scheme respects the following properties:

• Correctness: The algorithm will return True if the given username correspond to an
existing user on the server and the associated password is the exact same one as provided
by the user.

• Security: The algorithm will return False if the username is not registered on that ma-
chine or the password is not the one associated with the given username.

• Timing Independence: The execution timing of the algorithm should not help a potential
attacker to recover any information regarding other users of the server.

He writes the following code:

def has_access(username, password):
if username not in user_password_dict:

return False
else:

return check_password(password, user_password_dict[username])

Can an attacker recover any sensitive information regarding the secure server using a timing
attack? Can this have an impact on security?

Solution: Yes: if a given username is used or not by the server. This can help the attacker
to only perform brute-force attack to guess the password of existing users.

(d) [5 points] Bob decides to write another version:

def has_access(username, password):
cond = username not in user_password_dict
empty_password = ’00000000’
if cond:

real_p = empty_password
else:

real_p = user_password_dict[username]
return check_password(password, real_p)

This code has a series of security and timing issues. Detail one of them.

Solution: 1) The code returns True for any request that associate a username that is not
in the user base and the password ’00000000’ 2) The code performs a dict access if the
username is real and no access if not. That might still leak timing information.

6.S060 Final Solutions Name: 24 of 24

Problem 16. [10 points] Course Survey (4 parts)
This is the first time we taught this class, and we would like your feedback on how to improve this
class when we teach it next year. Any answer, except a blank answer, will receive full credit.
(a) [3 points] How did this class match up with your expectations for what you wanted to learn

by taking the class?

(b) [3 points] How important to you are the breadth of covered topics (authentication, encryption,
systems, software, hardware, privacy, human factors, etc); the depth in each of the topics; and
the connection between the topics? Which of these needs the most improvement the next time
we teach this class?

(c) [2 points] How did taking this class affect your thinking about taking other security-related
classes such as 6.857, 6.858, and 6.875?

(d) [2 points] What was your favorite part of the lab assignments that we should keep, and what
was the most tedious / least favorite aspect that we should fix?

